• Pandas


    1、excel 操作

        ID      Name  InStore  Date
    0  NaN  Book_001      NaN   NaN
    1  NaN  Book_002      NaN   NaN
    2  NaN  Book_003      NaN   NaN
    3  NaN  Book_004      NaN   NaN
    4  NaN  Book_005      NaN   NaN
    5  NaN  Book_006      NaN   NaN
    6  NaN  Book_007      NaN   NaN
    7  NaN  Book_008      NaN   NaN
    8  NaN  Book_009      NaN   NaN
    
    import pandas as pd
    from datetime import date,timedelta
    
    def add_month(d,md):
        yd = md // 12
        m  = d.month + md % 12
        if m != 12:
            yd += m // 12
            m = m % 12
        return  date(d.year + yd,m,d.day)
    books = pd.read_excel(r'C:UsersLenovoDesktopexcelBooks_data.xlsx',skiprows=3,usecols='C:F',index_col=None
                          ,dtype={'ID':str,'InStore':str,'Date':str})
    start = date(2019,1,1)
    
    for i in  books.index:
        books['ID'].at[i] = i + 1
        books['InStore'].at[i] = 'Yes'if i % 2 == 0 else 'N0'
        books['Date'].at[i] = start
        # books['Date'].at[i] = start + timedelta(days=i)
        # books['Date'].at[i] = date(start.year + i,start.month,start.day)
        books['Date'].at[i] = add_month(start,i)
    print(books)
    
    
        ID      Name InStore        Date
    0    1  Book_001     Yes  2019-01-01
    1    2  Book_002      N0  2019-02-01
    2    3  Book_003     Yes  2019-03-01
    3    4  Book_004      N0  2019-04-01
    4    5  Book_005     Yes  2019-05-01
    5    6  Book_006      N0  2019-06-01
    6    7  Book_007     Yes  2019-07-01
    7    8  Book_008      N0  2019-08-01
    8    9  Book_009     Yes  2019-09-01
    9   10  Book_010      N0  2019-10-01
    10  11  Book_011     Yes  2019-11-01
    11  12  Book_012      N0  2019-12-01
    12  13  Book_013     Yes  2020-01-01
    13  14  Book_014      N0  2020-02-01
    14  15  Book_015     Yes  2020-03-01
    # 列运算
    # 具体某列值运算
    for i in range(2,6):
        books['Price'].at[i] = books['Price'].at[i] + 2
    # # books['Price']= books['Price'] .apply(函数名)  # 自定义一个函数方式
    # books['Price']= books['Price'] .apply(lambda x:x+2)

    2、时间日期处理小结(datetime模块)

    https://www.cnblogs.com/tianyiliang/p/8270509.html

    3、排序

    import pandas as pd
    
    products = pd.read_excel(r'C:UsersLenovoDesktopexcel	empList.xlsx', index_col='ID')
    products.sort_values(by=['Worthy', 'Price'], ascending=[True, False], inplace=True)
    print(products)
    
    
  • 相关阅读:
    EditText之边框颜色
    Android之drawable state各个属性详解
    Android-第三天
    Android 问题
    ios VS android
    Android-第二天(2)
    collapse
    2020/3/7
    2020/3/6
    P3825 [NOI2017]游戏
  • 原文地址:https://www.cnblogs.com/ckstock/p/11665111.html
Copyright © 2020-2023  润新知