• 【BZOJ2423】最长公共子序列(动态规划)


    【BZOJ2423】最长公共子序列(动态规划)

    题面

    BZOJ
    洛谷

    题解

    今天考试的时候,神仙出题人(fdf)把这道题目作为一个二合一出了出来,我除了orz还是只会orz。

    对于如何(O(n^2))求解最长的长度是很简单的。
    (f[i][j])表示第一个串匹配到了(i),第二个串匹配到了(j)的最大长度。
    那么转移很显然,要么(i)向后挪动一位,要么(j)向后挪动一位,要么(i,j)匹配上了。
    也就是(f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+1)),最后一个转移当且仅当(X[i]=Y[j])时才有。

    考虑如何统计方案。显然是再记录一个数组(g[i][j])表示到了(f[i][j])时最长长度的方案数。
    每次转移的时候如果长度一样则相加。
    但是注意一个问题,当转移的时候,发现(f[i-1][j],f[i][j-1],f[i-1][j-1])三者转移是相同的时候,
    如果直接统计和的话,那么(f[i-1][j-1])的方案会被重复计算两次,因此需要额外减去。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define MOD 100000000
    #define ll long long
    #define MAX 5005
    void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
    int f[2][MAX],g[2][MAX],n,m;
    int ans=0,sum=0;
    char s[MAX],w[MAX];
    int main()
    {
    	scanf("%s%s",s+1,w+1);
    	n=strlen(s+1)-1;m=strlen(w+1)-1;
    	for(int i=0;i<=m;++i)g[0][i]=1;
    	for(int i=1,nw=1,pw=0;i<=n;++i,nw^=1,pw^=1)
    	{
    		memset(f[nw],0,sizeof(f[nw]));
    		memset(g[nw],0,sizeof(g[nw]));
    		g[nw][0]=1;
    		for(int j=1;j<=m;++j)
    		{
    			if(s[i]==w[j])f[nw][j]=f[pw][j-1]+1,g[nw][j]=g[pw][j-1];
    			else f[nw][j]=max(f[nw][j-1],f[pw][j]);
    			if(f[nw][j]==f[nw][j-1])add(g[nw][j],g[nw][j-1]);
    			if(f[nw][j]==f[pw][j])add(g[nw][j],g[pw][j]);
    			if(f[nw][j]==f[pw][j]&&f[nw][j]==f[nw][j-1]&&f[nw][j]==f[pw][j-1])add(g[nw][j],MOD-g[pw][j-1]);
    		}
    	}
    	printf("%d
    %d
    ",f[n&1][m],g[n&1][m]);
    	return 0;
    }
    
    
  • 相关阅读:
    Django+Bootstrap+Mysql 搭建个人博客(一)
    Django+nginx+uwsgi部署教程(centos7+ubuntu16.4)
    微信小程序入门(六)
    微信小程序入门(五)
    微信小程序入门(四)
    微信小程序入门(三)
    微信小程序入门(二)
    遗传算法常见问题解惑
    记录使用python实现QPSO求解最大值问题时,遇到的问题
    关于JetBrain系列软件的学生授权认证和授权到期(一年)重新申请的问题
  • 原文地址:https://www.cnblogs.com/cjyyb/p/9562518.html
Copyright © 2020-2023  润新知