【BZOJ5297】【CQOI2018】社交网络(矩阵树定理)
题面
Description
当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分。通常,一个用户在社交网络上发布一条消息
(例如微博、状态、Tweet等)后,他的好友们也可以看见这条消息,并可能转发。转发的消息还可以继续被人转
发,进而扩散到整个社交网络中。在一个实验性的小规模社交网络中我们发现,有时一条热门消息最终会被所有人
转发。为了研究这一现象发生的过程,我们希望计算一条消息所有可能的转发途径有多少种。为了编程方便,我们
将初始消息发送者编号为1,其他用户编号依次递增。该社交网络上的所有好友关系是已知的,也就是说对于A、B
两个用户,我们知道A用户可以看到B用户发送的消息。注意可能存在单向的好友关系,即A能看到B的消息,但B不
能看到A的消息。
还有一个假设是,如果某用户看到他的多个好友转发了同一条消息,他只会选择从其中一个转发,最多转发一次消
息。从不同好友的转发,被视为不同的情况。
如果用箭头表示好友关系,下图展示了某个社交网络中消息转发的所有可能情况。
初始消息是用户1发送的,加粗箭头表示一次消息转发
Input
输入文件第一行,为一个正整数n,表示社交网络中的用户数:
第二行为一个正整数m.表示社交网络中的好友关系数目。
接下来m行,每行为两个空格分隔的整数ai和bi,表示一组好友关系,即用户ai可以看到用户bi发送的消息。
1≤n≤250,1≤ai,bi≤n,1≤m≤n(n-1)
Output
输出文件共一行,为一条消息所有可能的转发途径的数量,除以1 0007所得的余数。
Sample Input
4
7
2 1
3 1
1 3
2 3
3 2
4 3
4 2
Sample Output
6
题解
所以,(CQOI2018)是模板题大赛吗???
这就是一个有向图的矩阵树定理的模板题啊。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 255
#define MOD 10007
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX][MAX],n,m;
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
a[v][u]--;a[u][u]++;
}
int ans=1;
for(int i=2;i<=n;++i)
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for(int k=i;k<=n;++k)a[i][k]=(a[i][k]+MOD-a[j][k]*t%MOD)%MOD,swap(a[i][k],a[j][k]);
ans*=-1;
}
for(int i=2;i<=n;++i)ans=ans*a[i][i]%MOD;
printf("%d
",(ans+MOD)%MOD);
}