【BZOJ4516】生成魔咒(后缀自动机)
题面
Description
魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1、2 拼凑起来形成一个魔咒串 [1,2]。
一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒。
例如 S=[1,2,1] 时,它的生成魔咒有 [1]、[2]、[1,2]、[2,1]、[1,2,1] 五种。S=[1,1,1] 时,它的生成魔咒有 [1]、
[1,1]、[1,1,1] 三种。最初 S 为空串。共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符。每次操作后都
需要求出,当前的魔咒串 S 共有多少种生成魔咒。
Input
第一行一个整数 n。
第二行 n 个数,第 i 个数表示第 i 次操作加入的魔咒字符。
1≤n≤100000。,用来表示魔咒字符的数字 x 满足 1≤x≤10^9
Output
输出 n 行,每行一个数。第 i 行的数表示第 i 次操作后 S 的生成魔咒数量
Sample Input
7
1 2 3 3 3 1 2
Sample Output
1
3
6
9
12
17
22
题解
直接后缀自动机在线构造就行了
每次插入之后产生的新的贡献就是
(last.len-last.parent.len)
直接输出即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 120000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n;
struct Node
{
map<int,int> son;
int ff,len;
}t[MAX<<1];
int last=1,tot=1;
ll ans;
void extend(int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];
t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
ans+=t[np].len-t[t[np].ff].len;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
extend(read());
printf("%lld
",ans);
}
return 0;
}