【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)
题面
[求sum_{i=1}^nsum_{j=1}^nijgcd(i,j)
]
$ n<=10^9$
题解
很明显的把(gcd)提出来
[sum_{d=1}^ndsum_{i=1}^nsum_{j=1}^nij[gcd(i,j)==d]
]
习惯性的提出来
[sum_{d=1}^nd^3sum_{i=1}^{n/d}sum_{j=1}^{n/d}ij[gcd(i,j)==1]
]
后面这玩意很明显的来一发莫比乌斯反演
[sum_{d=1}^nd^3sum_{i=1}^{n/d}mu(i)i^2(1+2+...[frac{n}{id}])^2
]
写起来好麻烦呀
我就设(sum(x)=1+2+3+...x)
令(T=id)
提出来!
[sum_{T=1}^nsum(frac{n}{T})^2sum_{d|T}d^3frac{T}{d}^2mu(frac{T}{d})
]
有些(d)可以约掉
[sum_{T=1}^nsum(frac{n}{T})^2T^2sum_{d|T}dmu(frac{T}{d})
]
现在如果把后面给筛出来
可以(O(sqrt n))求啦
现在,问题来了
[T^2sum_{d|T}dmu(frac{T}{d})$$怎么算??
考虑一个式子:
$$(id*mu)(i)=varphi(i)]
也就是说,(mu)和(id(x)=x)的狄利克雷卷积等于(varphi(i))
太神奇啦!!!
所以说,
[T^2sum_{d|T}dmu(frac{T}{d})=T^2varphi(T)
]
令$$f(i)=i^2varphi(i)$$
[S(n)=sum_{i=1}^nf(i)
]
杜教筛套路的式子拿出来
[g(1)S(n)=sum_{i=1}^n(g*f)(i)-sum_{i=2}^ng(i)S(frac{n}{i})
]
还是发现有(varphi(i))的项
想到$$sum_{d|i}varphi(d)=i$$
所以令(g(x)=x^2)
所以
[S(n)=sum_{i=1}^n(g*f)(i)-sum_{i=2}^ng(i)S(frac{n}{i})
]
[(g*f)(i)=sum_{d|i}f(d)g(frac{i}{d})=sum_{d|i}d^2varphi(d)frac{i}{d}^2
]
[=i^2sum_{d|i}varphi(d)=i^3
]
所以
[S(n)=sum_{i=1}^ni^3-sum_{i=2}^ni^2S(frac{n}{i})
]
根据小学奥数的经验:
(1^3+2^3+....n^3=(1+2+....n)^2=sum(n)^2)
所以现在有:
[ans=sum_{T=1}^nsum(frac{n}{T})^2 T^2sum_{d|T}dmu(frac{T}{d})
]
前面可以数论分块
后面用杜教筛可以再非线性时间里面求出前缀和
这道题目就搞定啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int MAX=8000000;
#define MAXN 8000000
#define ll long long
inline ll read()
{
ll x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll MOD,n,inv6,inv2;
int pri[MAXN],tot;
ll phi[MAXN+10];
bool zs[MAXN+10];
map<ll,ll> M;
ll fpow(ll a,ll b)
{
ll s=1;
while(b){if(b&1)s=s*a%MOD;a=a*a%MOD;b>>=1;}
return s;
}
void pre()
{
zs[1]=true;phi[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])phi[i*pri[j]]=1ll*phi[i]*phi[pri[j]]%MOD;
else{phi[i*pri[j]]=1ll*phi[i]*pri[j]%MOD;break;}
}
}
for(int i=1;i<=MAX;++i)phi[i]=(phi[i-1]+1ll*phi[i]*i%MOD*i%MOD)%MOD;
}
ll Sum(ll x){x%=MOD;return x*(x+1)%MOD*inv2%MOD;}
ll Sump(ll x){x%=MOD;return x*(x+1)%MOD*(x+x+1)%MOD*inv6%MOD;}
ll SF(ll x)
{
if(x<=MAX)return phi[x];
if(M[x])return M[x];
ll ret=Sum(x);ret=ret*ret%MOD;
for(ll i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
ll tt=(Sump(j)-Sump(i-1))%MOD;
ret-=SF(x/i)*tt%MOD;
ret%=MOD;
}
return M[x]=(ret+MOD)%MOD;
}
int main()
{
MOD=read();n=read();
MAX=min(1ll*MAX,n);
inv2=fpow(2,MOD-2);
inv6=fpow(6,MOD-2);
pre();
ll ans=0;
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
ll tt=Sum(n/i);tt=tt*tt%MOD;
ll gg=(SF(j)-SF(i-1))%MOD;
ans+=gg*tt%MOD;
ans%=MOD;
}
printf("%lld
",(ans+MOD)%MOD);
return 0;
}