【Luogu3806】点分治(点分治)
题面
题目描述
给定一棵有n个点的树
询问树上距离为k的点对是否存在。
输入格式:
n,m 接下来n-1条边a,b,c描述a到b有一条长度为c的路径
接下来m行每行询问一个K
输出格式:
对于每个K每行输出一个答案,存在输出“AYE”,否则输出”NAY”(不包含引号)
题解
点分治的模板题目,不做过多的解释
据我这个蒟蒻的观察
这道题的复杂度是(O(n^2))
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 11000
#define INF 1000000000
#define K 10000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAX<<1];
int h[MAX],cnt=1;
int size[MAX],minr,root,Size;
int S[MAX],tot;
bool vis[MAX];
int num[K+10],n,m;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
void Getroot(int u,int ff)
{
size[u]=1;
int ret=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(vis[v]||v==ff)continue;
Getroot(v,u);
ret=max(ret,size[v]);
size[u]+=size[v];
}
ret=max(ret,Size-size[u]);
if(ret<minr)minr=ret,root=u;
}
void Getdep(int u,int ff,int dep)
{
S[++tot]=dep;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff||vis[v])continue;
Getdep(v,u,dep+e[i].w);
}
}
void Calc(int u,int fl,int pr)
{
tot=0;
Getdep(u,u,0);
for(int i=1;i<=tot;++i)
for(int j=1;j<=tot;++j)
if(fl&&S[i]+S[j]<=K)num[S[i]+S[j]]++;
else if(S[i]+S[j]+pr<=K)num[S[i]+S[j]+pr]--;
}
void DFS(int u)
{
Calc(u,1,0);
vis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(vis[v])continue;
Calc(v,0,e[i].w*2);
minr=n;Size=size[v];Getroot(v,u);
DFS(root);
}
}
int main()
{
Size=n=read(),m=read();
for(int i=1,u,v,w;i<n;++i)
{
u=read(),v=read(),w=read();
Add(u,v,w);Add(v,u,w);
}
minr=n;Getroot(1,1);
DFS(root);
while(m--)
num[read()]?puts("AYE"):puts("NAY");
return 0;
}