【LOJ#6485】LJJ 学二项式定理(单位根反演)
题面
题解
显然对于(a0,a1,a2,a3)分开算答案。
这里以(a0)为例
[egin{aligned}
Ans&=frac{1}{4}a_0sum_{i=0}^n [4|i]{nchoose i}s^i\
&=frac{1}{4}a_0sum_{i=0}^n{nchoose i}s^isum_{j=0}^3 (omega_4^{j})^i\
&=frac{1}{4}a_0sum_{j=0}^3sum_{i=0}^n {nchoose i}s^i(omega_4^j)^i\
&=frac{1}{4}a_0sum_{j=0}^3(somega_4^j+1)^n
end{aligned}]
另外几个只需要把([4|i])变成([4|(i+k)])的形式,然后在计算的时候把(omega_4^k)给提取出来就行了。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MOD 998244353
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,ll b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int s,a[4],w,ans;ll n;
int main()
{
int T=read();w=fpow(3,(MOD-1)/4);
while(T--)
{
n=read();s=read();ans=0;
for(int i=0;i<4;++i)a[i]=read();
for(int i=0;i<4;++i)
for(int j=0,t=s,ww=1;j<4;++j,t=1ll*t*w%MOD,ww=1ll*ww*w%MOD)
ans=(ans+1ll*a[i]*fpow(t+1,n)%MOD*fpow(ww,4-i))%MOD;
ans=1ll*ans*fpow(4,MOD-2)%MOD;
printf("%d
",ans);
}
}