• topSort


    Sorting It All Out(poj1094)
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 30187   Accepted: 10442

    Description

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

    Input

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

    Output

    For each problem instance, output consists of one line. This line should be one of the following three:
    Sorted sequence determined after xxx relations: yyy...y. Sorted sequence cannot be determined. Inconsistency found after xxx relations.
    where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

    Sample Input

    4 6
    A<B
    A<C
    B<C
    C<D
    B<D
    A<B
    3 2
    A<B
    B<A
    26 1
    A<Z
    0 0
    

    Sample Output

    Sorted sequence determined after 4 relations: ABCD.
    Inconsistency found after 2 relations.
    Sorted sequence cannot be determined.

    题意:

    三种情况:  1. 在第x个关系中可以唯一的确定排序,并输出。  

                    2. 在第x个关系中发现了有回环(Inconsisitency矛盾)  

                    3.全部关系都没有发现上面两种情况,输出第3种.  

    要求对于给定的m个关系,一个个的读进去,每读进去一次就要进行一次拓扑排序,如果发现情况1和情况2,那么就不用再考虑后面的那些关系了,但是还要继续读完后面的关系(但不处理)。如果读完了所有关系,还没有出现情况1和情况2,那么就输出情况3.

    拓扑排序实现方法一(for循环):

     1 #include <iostream>
     2 #include <cstring>
     3 #include <string>
     4 #include <fstream>
     5 using namespace std;
     6 
     7 int grap[27][27];
     8 int indeg[26],temp[26];
     9 int n,m;
    10 char seq[26];
    11 
    12 int topSort()
    13 {
    14     int flag = 1;
    15     memcpy(temp,indeg,sizeof(indeg));
    16     memset(seq, '',sizeof(seq));
    17     for(int i = 0; i < n; i++)
    18     {
    19         int times = 0,loc;
    20         for(int j = 0; j < n; j++)
    21         {
    22             if(temp[j] == 0)     //处理重边的情况,建图时要格外注意!
    23             {
    24                 times++;
    25                 loc = j;
    26             }
    27         }
    28         if(times > 1) flag = -1;
    29         if(times == 0) return 0;
    30         temp[loc]--;
    31         seq[i] = 'A'+ loc;
    32         for(int k = 0; k < n; k++)
    33         {
    34             if(grap[loc][k])
    35             {
    36                 temp[k]--;
    37             }
    38         }
    39     }
    40     return flag;
    41 }
    42 
    43 int main()
    44 {
    45     while(cin >> n >> m)
    46     {
    47         if(n == 0 && m == 0)
    48             break;
    49             
    50         memset(grap,0,sizeof(grap));
    51         memset(indeg,0,sizeof(indeg));
    52         bool ok = false;
    53 
    54         for(int i = 0; i < m; i++)
    55         {
    56             string ss;
    57             cin >> ss;
    58             if(ok) continue;
    59             int row,col;
    60             row = ss[0] - 65;
    61             col = ss[2] - 65;
    62             if(grap[row][col] == 0)
    63             {
    64                 grap[row][col] = 1;
    65                 indeg[col]++;
    66             }
    67 
    68             int flag = topSort();
    69             if(flag==1)
    70             {
    71                 ok = true;
    72                 cout << "Sorted sequence determined after " << i+1 << " relations: " << seq << "."<<endl;
    73             }
    74             else if(flag==0)
    75             {
    76                 ok = true;
    77                 cout << "Inconsistency found after " << i+1 << " relations." << endl;
    78             }
    79         }
    80         
    81         if(!ok)
    82         {
    83             cout << "Sorted sequence cannot be determined." << endl;
    84         }
    85     }
    86 
    87     return 0;
    88 }
    View Code

    拓扑排序实现方法二(借助队列或栈):

     1 #include <iostream>
     2 #include <cstring>
     3 #include <string>
     4 #include <fstream>
     5 #include <queue>
     6 #include <stack>
     7 using namespace std;
     8 
     9 int grap[27][27];
    10 int indeg[26];
    11 int n,m;
    12 char seq[26];
    13 
    14 //借助队列实现拓扑排序,改成栈也一样
    15 int topSort()
    16 {
    17     int in[26];
    18     memcpy(in,indeg,sizeof(indeg));
    19     memset(seq, '',sizeof(seq));
    20     queue<int> s;
    21 
    22     for(int i=0; i<n; i++)
    23     {
    24         if(in[i] == 0)
    25             s.push(i);
    26     }
    27 
    28     int flag=1;
    29     int t,j=0;
    30     while(!s.empty())
    31     {
    32         if(s.size()>1)
    33             flag=-1;      //有多种排序方式,不能唯一确定
    34         t=s.front();
    35         s.pop();
    36         seq[j++] = t + 65;
    37         for(int i=0; i<n; i++)
    38         {
    39             if(grap[t][i])
    40             {
    41                 if(--in[i]==0)
    42                     s.push(i);
    43             }
    44         }
    45 
    46     }
    47 
    48     if(j != n) return 0;  //存在环
    49     else return flag;
    50 }
    51 
    52 int main()
    53 {
    54     while(cin >> n >> m)
    55     {
    56         if(n == 0 && m == 0)
    57             break;
    58 
    59         memset(grap,0,sizeof(grap));
    60         memset(indeg,0,sizeof(indeg));
    61         bool ok = false;
    62 
    63         for(int i = 0; i < m; i++)
    64         {
    65             string ss;
    66             cin >> ss;
    67             if(ok) continue;
    68             int row,col;
    69             row = ss[0] - 65;
    70             col = ss[2] - 65;
    71             if(grap[row][col] == 0)
    72             {
    73                 grap[row][col] = 1;
    74                 indeg[col]++;
    75             }
    76 
    77             int flag = topSort();
    78             if(flag==1)
    79             {
    80                 ok = true;
    81                 cout << "Sorted sequence determined after " << i+1 << " relations: " << seq << "."<<endl;
    82             }
    83             else if(flag==0)
    84             {
    85                 ok = true;
    86                 cout << "Inconsistency found after " << i+1 << " relations." << endl;
    87             }
    88         }
    89 
    90         if(!ok)
    91         {
    92             cout << "Sorted sequence cannot be determined." << endl;
    93         }
    94     }
    95 
    96     return 0;
    97 }
    View Code
  • 相关阅读:
    前端3
    前端-1
    第三十七章 MYSQL(二)
    第三十六章 MYSQL语句(一)
    第三十五 MYSQL 语句
    数字转换成中文大小写、金额大小写
    NPOI随笔——图片在单元格等比缩放且居中显示
    NPOI随笔——单元格样式CellStyle问题
    C++、C#、VB各语言日志代码
    .NET认识与理论总结
  • 原文地址:https://www.cnblogs.com/cjshuang/p/4720615.html
Copyright © 2020-2023  润新知