• 导数积分表


    导数

    egin{aligned}
    1.&f(x)=C,f'(x)=0
    end{aligned}
    egin{aligned}
    2.&f(x)=x^n,f'(x)=nx^{n-1}
    end{aligned}
    egin{aligned}
    3.&f(x)=a^x,f'(x)=ln a imes a^x
    end{aligned}
    egin{aligned}
    4.&f(x)=e^x,f'(x)=e^x
    end{aligned}
    egin{aligned}
    5.&f(x)=log_ax,f'(x)=frac{1}{x imes ln a}
    &(f(x)=ln x,f'(x)=frac{1}{x})
    end{aligned}
    egin{aligned}
    6.&f(x)=sin x,f'(x)=cos x
    end{aligned}
    egin{aligned}
    7.&f(x)=cos x,f'(x)=-sin x
    end{aligned}
    egin{aligned}
    8.&f(x)=tan x,f'(x)=frac{1}{cos^2x}
    end{aligned}
    egin{aligned}
    9.&f(x)=cot x,f'(x)=-frac{1}{sin^2x}
    end{aligned}
    egin{aligned}
    10.&f(x)=g[h(x)],f'(x)=g'[h(x)]h'(x)
    end{aligned}
    egin{aligned}
    11.&f(x)=g(x)h(x),f'(x)=g'(x)h(x)+g(x)h'(x)
    end{aligned}
    egin{aligned}
    12.&f(x)=frac{g(x)}{h(x)},f'(x)=frac{[g'(x)h(x)-g(x)h'(x)]}{h^2(x)}
    end{aligned}

    积分

    egin{aligned}
    1.&int k dx=kx+C
    end{aligned}
    egin{aligned}
    2.&int k^mu dx=frac{x^{mu +1}}{mu +1}+C (mu ot= -1)
    end{aligned}
    egin{aligned}
    3.&intfrac{dx}{x}=ln|x|+C
    end{aligned}
    egin{aligned}
    4.&intfrac{dx}{1+x^2}=arctan x+C
    end{aligned}
    egin{aligned}
    5.&intfrac{dx}{sqrt{1+x^2}}=arcsin x+C
    end{aligned}
    egin{aligned}
    6.&int cos x dx=sin x+C
    end{aligned}
    egin{aligned}
    7.&int sin x dx=-cos x+C
    end{aligned}
    egin{aligned}
    8.&int frac{dx}{cos^2x}=int sec^2xdx=tan x+C
    end{aligned}
    egin{aligned}
    9.&int frac{dx}{sin^2x}=int csc^2xdx=-cot x+C
    end{aligned}
    egin{aligned}
    10.&int sec x tan x dx=sec x+C
    end{aligned}
    egin{aligned}
    11.&int csc x cot x dx=-csc x+C
    end{aligned}
    egin{aligned}
    12.&int e^x dx=e^x+C
    end{aligned}
    egin{aligned}
    13.&int a^x dx=frac{a^x}{ln a}+C
    end{aligned}

  • 相关阅读:
    Jenkins
    python爬虫
    git分布式版本控制
    CKA考试认证总结
    gitlab-ci 工具链
    gitlab-ci 模板库实践
    gitlab-cicd
    gitlab配置文件gitlab.rb详解
    局部变量表中的slot简述
    JVM系统线程类型
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/9436713.html
Copyright © 2020-2023  润新知