题面
Sol
考虑求每个串在模板串中出现的次数
就在(sam)上走就行了,因为它的每一条路径都是它的一个子串
走到最后一个点,若匹配,那么它的答案就是(parent)树的这个点的子树大小
然后带修改就写个(LCT)维护(parent)树就好了
(LCT)维护子树信息,非常好写
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
const int maxn(1200005);
struct LCT{
int fa[maxn], val[maxn], sum[maxn], ch[2][maxn];
IL int Son(RG int x){
return ch[1][fa[x]] == x;
}
IL int Isroot(RG int x){
return ch[0][fa[x]] != x && ch[1][fa[x]] != x;
}
IL void Update(RG int x){
sum[x] = val[x] + sum[ch[0][x]] + sum[ch[1][x]];
}
IL void Rotate(RG int x){
RG int y = fa[x], z = fa[y], c = Son(x);
if(!Isroot(y)) ch[Son(y)][z] = x; fa[x] = z;
ch[c][y] = ch[!c][x], fa[ch[c][y]] = y;
ch[!c][x] = y, fa[y] = x;
Update(y);
}
IL void Splay(RG int x){
for(RG int y = fa[x]; !Isroot(x); Rotate(x), y = fa[x])
if(!Isroot(y)) Son(x) ^ Son(y) ? Rotate(x) : Rotate(y);
Update(x);
}
IL void Access(RG int x){
for(RG int y = 0; x; y = x, x = fa[x]){
Splay(x);
val[x] += sum[ch[1][x]] - sum[y];
ch[1][x] = y, Update(x);
}
}
IL void Cut(RG int x){
Access(x), Splay(x);
ch[0][x] = fa[ch[0][x]] = 0, Update(x);
}
IL void Link(RG int x, RG int y){
Splay(x), Access(y), Splay(y);
fa[x] = y, val[y] += sum[x], Update(y);
}
} lct;
int tot = 1, last = 1, trans[26][maxn], fa[maxn], len[maxn];
IL void Extend(RG int c){
RG int p = last, np = ++tot;
last = np, len[np] = len[p] + 1, lct.val[np] = 1;
while(p && !trans[c][p]) trans[c][p] = np, p = fa[p];
if(!p) fa[np] = 1, lct.Link(np, 1);
else{
RG int q = trans[c][p];
if(len[q] == len[p] + 1) fa[np] = q, lct.Link(np, q);
else{
RG int nq = ++tot;
lct.Link(nq, fa[q]);
fa[nq] = fa[q], len[nq] = len[p] + 1;
for(RG int i = 0; i < 26; ++i) trans[i][nq] = trans[i][q];
if(fa[q]) lct.Cut(q);
lct.Link(q, nq), lct.Link(np, nq);
fa[q] = fa[np] = nq;
while(p && trans[c][p] == q) trans[c][p] = nq, p = fa[p];
}
}
}
int q, mask, ans;
char s[maxn * 3], op[8];
IL void NewOption(RG int l){
RG int seed = mask;
for(RG int i = 0; i < l; ++i){
seed = (seed * 131 + i) % l;
swap(s[i], s[seed]);
}
}
int main(RG int argc, RG char *argv[]){
q = Input(), scanf(" %s", s);
for(RG int i = 0, l = strlen(s); i < l; ++i) Extend(s[i] - 'A');
for(RG int i = 1; i <= q; ++i){
scanf(" %s %s", op, s);
RG int l = strlen(s);
NewOption(l);
if(op[0] == 'Q'){
RG int nw = 1;
for(RG int i = 0; i < l; ++i) nw = trans[s[i] - 'A'][nw];
if(!nw) ans = 0;
else lct.Access(nw), lct.Splay(nw), ans = lct.val[nw];
printf("%d
", ans), mask ^= ans;
}
else for(RG int i = 0; i < l; ++i) Extend(s[i] - 'A');
}
return 0;
}