• BSGS算法及扩展


    BSGS算法

    (Baby Step Giant Step)算法,即大步小步算法,缩写为(BSGS)
    拔山盖世算法

    它是用来解决这样一类问题
    (y^x = z (mod p)),给定(y,z,p>=1)求解(x)

    普通的(BSGS)只能用来解决(gcd(y,p)=1)的情况

    (x=a*m+b, m=lceil sqrt p ceil, ain[0,m), bin[0,m))
    那么(y^{a*m}=z*y^{-b} (mod p))

    怎么求解,为了方便,设(x=a*m-b)
    那么(y^{a*m}=z*y^b(mod p), ain(0,m+1])

    直接暴力辣,把右边的(b)枚举([0,m)),算出(z*y^b(mod p)),哈希存起来
    然后左边(a)枚举((0, m+1]),算出(y^{a*m}(mod p))查表就行了

    然后不知道为什么要用(exgcd),只会(map)...

    代码

    [SDOI2011]计算器

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    template <class Int>
    IL void Input(RG Int &x){
        RG int z = 1; RG char c = getchar(); x = 0;
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        x *= z;
    }
    
    IL void None(){
    	puts("Orz, I cannot find x!");
    }
    
    int p;
    
    IL int Pow(RG ll x, RG ll y){
    	RG ll ret = 1;
    	for(; y; x = x * x % p, y >>= 1)
    		if(y & 1) ret = ret * x % p;
    	return ret;
    }
    
    map <int, int> pw;
    
    IL void BSGS(RG int x, RG int y){
    	pw.clear();
    	if(y == 1){
    		puts("0");
    		return;
    	}
    	RG int ans = -1, m = sqrt(p) + 1, xx, s = y;
    	for(RG int i = 0; i < m; ++i){
    		pw[s] = i;
    		s = 1LL * s * x % p;
    	}
    	xx = Pow(x, m), s = 1;
    	for(RG int i = 1; i <= m + 1; ++i){
    		s = 1LL * s * xx % p;
    		if(pw.count(s)){
    			ans = i * m - pw[s];
    			break;
    		}
    	}
    	if(ans < 0) None();
    	else printf("%d
    ", ans);
    }
    
    int T, k, y, z;
    
    int main(RG int argc, RG char* argv[]){
    	for(Input(T), Input(k); T; --T){
    		Input(y), Input(z), Input(p);
    		if(k == 1) printf("%d
    ", Pow(y, z));
    		else if(k == 2){
    			RG int d = (y % p) ? 1 : p;
    			if(z % d) None();
    			else printf("%lld
    ", 1LL * Pow(y, p - 2) * z % p);
    		}
    		else{
    			if(y % p) BSGS(y % p, z % p);
    			else None();
    		}
    	}
        return 0;
    }
    
    

    扩展BSGS

    对于(gcd(y, p) e1)怎么办?

    我们把它写成(y*y^{x-1}+k*p=z, kin Z)的形式

    根据(exgcd)的理论
    那么如果(y,p)(gcd)不是(z)的约数就不会有解

    (d=gcd(y,p))
    那么

    [frac{y}{d}*y^{x-1}+k*frac{p}{d}=frac{z}{d} ]

    递归到(d=1)
    设之间的所有的(d)的乘积为(g),递归(c)
    (x'=x-c, p'=frac{p}{g},z'=frac{z}{g})
    那么

    [y^{x'}*frac{y^c}{g}=z'(mod p') ]

    那么(BSGS)求解就好了

    代码

    SPOJMOD Power Modulo Inverted

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    # define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
    using namespace std;
    typedef long long ll;
    
    template <class Int>
    IL void Input(RG Int &x){
        RG int z = 1; RG char c = getchar(); x = 0;
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        x *= z;
    }
    
    map <int, int> pw;
    
    IL int Gcd(RG int x, RG int y){
    	return !y ? x : Gcd(y, x % y);
    }
    
    IL int Pow(RG ll x, RG ll y, RG int p){
    	RG ll ret = 1;
    	for(; y; x = x * x % p, y >>= 1)
    		if(y & 1) ret = ret * x % p;
    	return ret;
    }
    
    int a, b, p;
    
    IL int EX_BSGS(){
    	if(b == 1) return 0;
    	pw.clear();
    	RG int cnt = 0, t = 1, s, x, m;
    	for(RG int d = Gcd(a, p); d != 1; d = Gcd(a, p)){
    		if(b % d) return -1;
    		++cnt, b /= d, p /= d, t = 1LL * t * a / d % p;
    		if(b == t) return cnt;
    	}
    	s = b, m = sqrt(p) + 1;
    	for(RG int i = 0; i < m; ++i){
    		pw[s] = i;
    		s = 1LL * s * a % p;
    	}
    	x = Pow(a, m, p), s = t;
    	for(RG int i = 1; i <= m; ++i){
    		s = 1LL * s * x % p;
    		if(pw.count(s)) return i * m - pw[s] + cnt;
    	}
    	return -1;
    }
    
    int ans;
    
    int main(RG int argc, RG char* argv[]){
    	for(Input(a), Input(p), Input(b); a + b + p;){
    		a %= p, b %= p, ans = EX_BSGS();
    		if(ans < 0) puts("No Solution");
    		else printf("%d
    ", ans);
    		Input(a), Input(p), Input(b);
    	}
        return 0;
    }
    
    
  • 相关阅读:
    PEP8 Python 编码规范整理
    github操作
    重零开始,写一个股票交易项目(1)
    矢量地图质量检查现状与需求(2篇)
    导航数据质量评价相关
    测绘数据国内外现状概述
    机器的反叛-机器的智能会超越人类吗?
    标签要素调用CSS样式优先级说明
    内存碎片概念及主要避免方式
    关于年终述职总结
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8748022.html
Copyright © 2020-2023  润新知