• Bzoj4555: [Tjoi2016&Heoi2016]求和


    题面

    Bzoj

    Sol

    推柿子
    因为当(j>i)(S(i, j)=0),所以有

    [sum_{i=0}^{n}sum_{j=0}^{n}S(i, j)2^j(j!) ]

    枚举(j)

    [sum_{j=0}^{n}2^j(j!)sum_{i=0}^{n}S(i, j) ]

    带入(S(i, j))公式

    [sum_{j=0}^{n}2^j(j!)sum_{i=0}^{n}sum_{k=0}^{j}frac{(-1)^k}{k!}frac{(j-k)^i}{(j-k)!} ]

    [=sum_{j=0}^{n}2^j(j!)sum_{k=0}^{j}frac{(-1)^k}{k!}frac{sum_{i=0}^{n}(j-k)^i}{(j-k)!} ]

    (sum_{i=0}^{n}(j-k)^i)有公式求,然后跑(NTT)

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int Zsy(998244353);
    const int _(4e5 + 5);
    const int Phi(998244352);
    const int G(3);
    
    IL int Input(){
        RG int x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int n, A[_], B[_], N, l, r[_], fac[_], inv[_], mul[_], pw[_], ans;
    
    IL int Pow(RG ll x, RG ll y){
        RG ll ret = 1;
        for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
        return ret;
    }
    
    IL void NTT(RG int* P, RG int opt){
        for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);
        for(RG int i = 1; i < N; i <<= 1){
            RG int W = Pow(G, Phi / (i << 1));
            if(opt == -1) W = Pow(W, Zsy - 2);
            for(RG int p = i << 1, j = 0; j < N; j += p)
                for(RG int w = 1, k = 0; k < i; ++k, w = 1LL * w * W % Zsy){
                    RG int X = P[k + j], Y = 1LL * w * P[k + j + i] % Zsy;
                    P[k + j] = (X + Y) % Zsy, P[k + j + i] = (X - Y + Zsy) % Zsy;
                }
        }
        if(opt == 1) return;
        RG int Inv = Pow(N, Zsy - 2);
        for(RG int i = 0; i < N; ++i) P[i] = 1LL * P[i] * Inv % Zsy;
    }
    
    IL void Mul(){
        for(N = 1; N <= n + n; N <<= 1) ++l;
        for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
        NTT(A, 1); NTT(B, 1);
        for(RG int i = 0; i < N; ++i) A[i] = 1LL * A[i] * B[i] % Zsy;
        NTT(A, -1);
    }
    
    int main(RG int argc, RG char* argv[]){
        n = Input(), pw[0] = fac[0] = mul[0] = 1, mul[1] = n + 1;
        for(RG int i = 1; i <= n; ++i){
            fac[i] = 1LL * i * fac[i - 1] % Zsy;
            pw[i] = 1LL * 2 * pw[i - 1] % Zsy;
            if(i == 1) continue;
            mul[i] = 1LL * (Pow(i, n + 1) - 1) * Pow(i - 1, Zsy - 2) % Zsy;
            if(mul[i] < 0) mul[i] += Zsy;
        }
        inv[n] = Pow(fac[n], Zsy - 2);
        for(RG int i = n - 1; ~i; --i) inv[i] = 1LL * inv[i + 1] * (i + 1) % Zsy;
        for(RG int i = 0; i <= n; ++i){
            A[i] = B[i] = inv[i];
            if(i & 1) A[i] = Zsy - A[i];
            B[i] = 1LL * mul[i] * inv[i] % Zsy;
        }
        Mul();
        for(RG int i = 0; i <= n; ++i) (ans += 1LL * A[i] * pw[i] % Zsy * fac[i] % Zsy) %= Zsy;
        printf("%d
    ", ans);
        return 0;
    }
    
    
  • 相关阅读:
    数据库分库分表(sharding)系列(五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案
    数据库分库分表(sharding)系列(三) 关于使用框架还是自主开发以及sharding实现层面的考量
    docker的入门简介
    nginx方向代理详解及配置
    nginx配置文件详解
    nginx安装
    iptables防火墙
    服务器加载过程
    服务器
    操作系统
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8456883.html
Copyright © 2020-2023  润新知