• Bzoj2428: [HAOI2006]均分数据


    题面

    链接

    Sol

    模拟退火
    再做数列上的(DP)

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1005);
    
    IL int Input(){
        RG int x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    const double EPS(1e-15);
    const double dt(0.9993);
    
    double a[_], ans = 1e18, f[50][50], sum[_], ave;
    int n, m;
    
    # define Sqr(x) ((x) * (x))
    IL double Calc(){
        Fill(f, 127); f[0][0] = 0;
        for(RG int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + a[i];
        for(RG int i = 1; i <= n; ++i)
            for(RG int j = 1; j <= i && j <= m; ++j)
                for(RG int k = 0; k < i; ++k)
                    f[i][j] = min(f[i][j], f[k][j - 1] + Sqr(sum[i] - sum[k] - ave)); 
        return f[n][m];
    }
    
    IL double SA(RG double T){
        RG double cnt = 1e18;
        for(; T > EPS; T *= dt){
            RG int x = 1, y = 1;
            while(x == y) x = rand() % n + 1, y = rand() % n + 1;
            swap(a[x], a[y]);
            RG double ret = Calc();
            ans = min(ans, ret);
            if(ret < cnt || exp((cnt - ret) / T) * RAND_MAX > rand()) cnt = ret;
            else swap(a[x], a[y]);
        }
    }
    
    int main(RG int argc, RG char* argv[]){
        n = Input(); m = Input();
        srand(19260817);
        for(RG int i = 1; i <= n; ++i) a[i] = Input(), ave += a[i];
        ave /= m;
        SA(1000000);
        printf("%.2lf
    ", sqrt(ans / m));
        return 0;
    }
    
    
  • 相关阅读:
    安装httpd服务
    tmpfs临时文件系统,是一种基于内存的文件系统
    oracle Awr报告
    maven jar 怎么看jdk编译版本
    Oracle 11g direct path read 等待事件的理解
    Spring AOP 实现原理
    JVM相关知识(1)
    spring ioc原理(看完后大家可以自己写一个spring)
    java中HashSet详解
    java中HashMap详解
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8438020.html
Copyright © 2020-2023  润新知