• Bzoj3930: [CQOI 2015] 选数 & COGS2699: [CQOI 2015] 选数加强版


    题面

    Bzoj
    COGS加强版

    Sol

    非加强版可以枚举AC这里不再讲述


    (f(i))表示在([L, H])(N)个,(gcd为i)的方案数
    (F(i)=sum_{i|d}f(d))表示([L,H])(N)个,(gcd为i)的倍数的方案数
    易得(F(i)=(lfloorfrac{H}{i} floor-lfloorfrac{L-1}{i} floor)^N)
    直接莫比乌斯反演得到(f(K)=sum_{K|d}mu(frac{d}{K})F(d))

    (frac{d}{K})替换掉(f(K)=sum_{i=1}^{lfloorfrac{H}{K} floor}mu(i)F(K*i))

    分块(F(K*i))杜教筛出(mu)的前缀和就可以了

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1e6 + 1), Zsy(1e9 + 7);
    
    IL ll Read(){
        RG ll x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int prime[_], mu[_], s[_], num, L, H, N, K, MAXN;
    map <int, int> Mu;
    bool isprime[_];
    
    IL ll Pow(RG ll x, RG ll y){
    	RG ll ret = 1;
    	for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
    	return ret;
    }
    
    IL void Prepare(){
    	isprime[1] = 1; mu[1] = 1;
        for(RG int i = 2; i < MAXN; ++i){
            if(!isprime[i]){  prime[++num] = i; mu[i] = -1;  }
            for(RG int j = 1; j <= num && i * prime[j] < MAXN; ++j){
                isprime[i * prime[j]] = 1;
                if(i % prime[j]) mu[i * prime[j]] = -mu[i];
                else{  mu[i * prime[j]] = 0; break;  }
            }
    		mu[i] += mu[i - 1];
        }
    }
    
    IL int SumMu(RG int n){
    	if(n < MAXN) return mu[n];
    	if(Mu[n]) return Mu[n];
    	RG int ans = 1;
    	for(RG int i = 2, j; i <= n; i = j + 1){
    		j = n / (n / i);
    		ans -= 1LL * (j - i + 1) * SumMu(n / i) % Zsy;
    		ans = (ans + Zsy) % Zsy;
    	}
    	return Mu[n] = ans;
    }
    
    int main(RG int argc, RG char* argv[]){
    	N = Read(); K = Read(); L = (Read() - 1) / K; H = Read() / K;
    	RG int ans = 0, lst = 0, now; MAXN = min(H + 1, _); Prepare();
    	for(RG int i = 1, j; i <= H; i = j + 1){
    		j = H / (H / i); if(L / i) j = min(j, L / (L / i));
    		now = SumMu(j);
    		ans += 1LL * (now - lst) * Pow(H / i - L / i, N) % Zsy;
    		ans = (ans % Zsy + Zsy) % Zsy; lst = now;
    	}
    	printf("%d
    ", ans);
        return 0;
    }
    
    
  • 相关阅读:
    BZOJ 3330 分数
    FR #11题解
    BZOJ 1857 传送带
    BZOJ 4757 Building a Tall Barn
    FR #10题解
    BZOJ 4393 Fruit Feast
    BZOJ 3126 Photo
    BZOJ 1312 Hard Life
    BZOJ 2039 employ人员雇佣
    Count SIN Numbers
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8303095.html
Copyright © 2020-2023  润新知