题意
求(sum_{i=1}^{n}varphi(i)和sum_{i=1}^{n}mu(i))
(n <= 2^{31}-1)
不会做啊。。。
只会线性筛,显然不能线性筛
这个时候就需要杜教筛
怎么筛
先看一下狄利克雷卷积
假设我们要求(F(i)=sum_{i=1}^{n}f(n))而(n(10^{11}左右))比较大不能线性筛时考虑杜教筛
套路的推导:
先随意找一个函数(g(i))和(f(i))求狄利克雷卷积:
$$(g * f)(n) = sum_{d|n} g(d)f(frac{n}{d})$$
它的前缀和就是
$$sum_{i=1}^{n}sum_{d|i} g(d)f(frac{i}{d})$$
现在要想办法向(F(n))上靠:
$$原式=sum_{d=1}^{n}sum_{d|i}g(d)f(frac{i}{d})=sum_{d=1}^{n}sum_{i=1}^{lfloorfrac{n}{d}
floor}g(d)f(i)$$
$$=sum_{d=1}^{n}g(d)sum_{i=1}^{lfloorfrac{n}{d}
floor}f(i)=sum_{d=1}^{n}g(d)F(lfloorfrac{n}{d}
floor)$$
所以
(g(1)=1时最好)
如果能够快速的对(g)和(g * f)求和,那么就能在(O(n^{frac{3}{4}})的时间内计算出F(n))复杂度证明略不会
如果(f)为积性函数,还可以线性筛出(F)的前若干项((n^{frac{2}{3}})最优)降低复杂度
Sol
再看这道题
先看(varphi):
设(phi(i)=sum_{i=1}^{n}varphi(i))
按上面的来
$$g(1)phi(n)=sum_{i=1}^{n}(gvarphi)(i)-sum_{i=2}^{n}g(d)phi(lfloorfrac{n}{d}
floor)$$
有个定理(sum_{d|n}varphi(d)=n)
设(g(i)=1)所以
$$sum_{i=1}^{n}(gvarphi)(i)=sum_{i=1}^{n}sum_{d|i}varphi(frac{i}{d})=frac{n*(n + 1)}{2}$$
线性筛一部分,带进去递归处理即可
再看(mu):
设(U(n)=sum_{i=1}^{n}mu(i))
一样的套路得到
$$g(1)U(n)=sum_{i=1}^{n}sum_{d|i}g(d)mu(frac{i}{d})-sum_{i=2}^{n}g(d)U(lfloorfrac{n}{d}
floor)$$
注意到(sum_{d|n}mu(d)=[n=1]),直接令(g(i)=1)则
$$U(n)=1-sum_{i=2}^{n}g(d)U(lfloorfrac{n}{d}
floor)$$
一样的递归处理即可
一定要记忆化(我用的map)
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(5e6 + 1);
IL ll Read(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int prime[_], num;
ll phi[_], mu[_];
map <int, ll> Phi, Mu;
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; phi[1] = mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]){ prime[++num] = i; mu[i] = -1; phi[i] = i - 1; }
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]){ mu[i * prime[j]] = -mu[i]; phi[i * prime[j]] = phi[i] * (prime[j] - 1); }
else{ mu[i * prime[j]] = 0; phi[i * prime[j]] = phi[i] * prime[j]; break; }
}
}
for(RG int i = 2; i < _; ++i) mu[i] += mu[i - 1], phi[i] += phi[i - 1];
}
IL ll Sumphi(RG ll n){
if(n < _) return phi[n];
if(Phi[n]) return Phi[n];
RG ll ans = n * (n + 1) / 2;
for(RG ll i = 2, j; i <= n; i = j + 1){
j = n / (n / i);
ans -= (j - i + 1) * Sumphi(n / i);
}
return Phi[n] = ans;
}
IL ll Summu(RG ll n){
if(n < _) return mu[n];
if(Mu[n]) return Mu[n];
RG ll ans = 1;
for(RG ll i = 2, j; i <= n; i = j + 1){
j = n / (n / i);
ans -= (j - i + 1) * Summu(n / i);
}
return Mu[n] = ans;
}
int main(RG int argc, RG char* argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read();
printf("%lld %lld
", Sumphi(n), Summu(n));
}
return 0;
}