• BZOJ3924 : [Zjoi2015]幻想乡战略游戏


    Sol

    作为一个刚刚学动态点分治的新手,表示这道题很难啃动。。。

    既然是动态点分治,那么先建出点分树,之后暴跳父亲就是log的

    这道题就是要求带权重心,可以证明,随意在点分树上从一个点出发,每次选最小答案的子重心,最后一定能找到答案。。感觉就相当于在树上二分。。。
    修改就爆跳父亲

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(2e5 + 10);
    
    IL ll Read(){
    	RG ll x = 0, z = 1; RG char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    int n, fst[_], nxt[_], w[_], to[_], cnt, Q;
    
    IL void Add(RG int u, RG int v, RG int ww){  nxt[cnt] = fst[u]; to[cnt] = v; w[cnt] = ww; fst[u] = cnt++;  }
    
    namespace ChainDiv{
    	int fa[_], size[_], top[_], deep[_], son[_], dfn[_], Index;
    
    	IL void Dfs1(RG int u){
    		size[u] = 1;
    		for(RG int e = fst[u]; e != -1; e = nxt[e]){
    			if(size[to[e]]) continue;
    			deep[to[e]] = deep[u] + w[e]; fa[to[e]] = u;
    			Dfs1(to[e]);
    			size[u] += size[to[e]];
    			if(size[to[e]] > size[son[u]]) son[u] = to[e];
    		}
    	}
    
    	IL void Dfs2(RG int u, RG int Top){
    		top[u] = Top; dfn[u] = ++Index;
    		if(son[u]) Dfs2(son[u], Top);
    		for(RG int e = fst[u]; e != -1; e = nxt[e]) if(!dfn[to[e]]) Dfs2(to[e], to[e]);
    	}
    
    	IL ll Dis(RG int u, RG int v){
    		RG ll dis = deep[u] + deep[v];
    		while(top[u] ^ top[v]){  if(deep[top[u]] < deep[top[v]]) swap(u, v); u = fa[top[u]];  }
    		if(deep[u] > deep[v]) swap(u, v);
    		return dis - 2 * deep[u];
    	}
    }
    
    int size[_], mx[_], frt[_], vis[_], rt, sz, root, ft[_];
    struct Edge{  int nt, to, rt;  } edge[_];
    ll sum[_], pres[_], alls[_];
    
    IL void _Add(RG int u, RG int v, RG int rrt){  edge[cnt] = (Edge){ft[u], v, rrt}; ft[u] = cnt++;  }
    
    IL void Getroot(RG int u, RG int ff){
    	size[u] = 1; mx[u] = 0;
    	for(RG int e = fst[u]; e != -1; e = nxt[e]){
    		if(vis[to[e]] || to[e] == ff) continue;
    		Getroot(to[e], u);
    		size[u] += size[to[e]];
    		mx[u] = max(mx[u], size[to[e]]);
    	}
    	mx[u] = max(mx[u], sz - size[u]);
    	if(mx[u] < mx[rt]) rt = u;
    }
    
    IL void Create(RG int u, RG int ff){
    	frt[u] = ff; vis[u] = 1;
    	for(RG int e = fst[u]; e != -1; e = nxt[e]){
    		if(vis[to[e]]) continue;
    		rt = 0; sz = size[to[e]];
    		Getroot(to[e], u);
    		_Add(u, to[e], rt);
    		Create(rt, u);
    	}
    }
    
    IL void Modify(RG int u, RG ll d){
    	sum[u] += d;
    	for(RG int v = u; frt[v]; v = frt[v]){
    		RG ll dis = ChainDiv::Dis(u, frt[v]);
    		sum[frt[v]] += d; pres[v] += d * dis;
    		alls[frt[v]] += d * dis;
    	}
    }
    
    IL ll Calc(RG int u){
    	RG ll ret = alls[u];
    	for(RG int v = u; frt[v]; v = frt[v]){
    		RG ll dis = ChainDiv::Dis(u, frt[v]);
    		ret += dis * (sum[frt[v]] - sum[v]);
    		ret += alls[frt[v]] - pres[v];
    	}
    	return ret;
    }
    
    IL ll Query(RG int u){
    	RG ll tmp = Calc(u);
    	for(RG int e = ft[u]; e != -1; e = edge[e].nt)
    		if(Calc(edge[e].to) < tmp) return Query(edge[e].rt);
    	return tmp;
    }
    
    int main(RG int argc, RG char* argv[]){
    	sz = n = Read(); Q = Read(); Fill(fst, -1); Fill(ft, -1);
    	for(RG int i = 1, a, b, c; i < n; ++i) a = Read(), b = Read(), c = Read(), Add(a, b, c), Add(b, a, c);
    	ChainDiv::Dfs1(1); ChainDiv::Dfs2(1, 1);
    	mx[0] = n + 1; cnt = 0;
    	Getroot(1, 0); root = rt; Create(rt, 0);
    	while(Q--){
    		RG int u = Read(), d = Read();
    		Modify(u, d);
    		printf("%lld
    ", Query(root));
    	}
        return 0;
    }
    
    
  • 相关阅读:
    ArrayList源码剖析
    Java集合框架
    Java数据结构和算法(十五)——无权无向图
    Java数据结构和算法(十四)——堆
    Java数据结构和算法(十三)——哈希表
    Java数据结构和算法(十二)——2-3-4树
    Java数据结构和算法(十一)——红黑树
    Java数据结构和算法(十)——二叉树
    Java数据结构和算法(九)——高级排序
    [刷题] Leetcode算法 (2020-2-27)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8278299.html
Copyright © 2020-2023  润新知