• Codeforces 981H:K Paths


    传送门
    考虑枚举一条路径 (u,v),求出所有边经过它的答案
    只需要求出 (u) 的子树内选出 (k) 个可以重复的点,使得它们到 (u) 的路径不相交
    不难发现,就是从 (u) 的儿子的子树内各自选一个以及可以选多次 (u) 自己
    设这个方案数为 (f_u)
    再设 (size_u) 表示 (u) 的子树大小,(son_u) 表示 (u) 的儿子集合
    考虑生成函数,设

    [A(x)=prod_{vin son_u}(1+size_vx) ]

    那么 (f_u=sum_{i=0}^{k}k^{underline i}A_i)
    运用分治 (FFT) 预处理 (f) 可以做到 (O(nlog^2n))
    现在的问题是当 (u,v) 是祖先关系的时候,设 (u)(v) 的祖先
    那么 (u) 要计算以 (v) 为根的时候的子树答案
    一个想法就是两遍 (dfs) 每次到一条边 (u ightarrow v) 对于这个多项式乘上一个

    [frac{1+(n-size_u)x}{1+size_vx} ]

    而考虑到一个点的儿子不同的 (size) 最多之后 (sqrt{n}) 个,那么只要做 (sqrt{n}) 次上面的操作,复杂度 (O(nsqrt{n}))
    总复杂度 (O(nlog^2n+nsqrt{n}))
    枚举路径可以通过子树和优化成 (O(n))

    # include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    const int maxn(4e5 + 5);
    const int mod(998244353);
    
    inline void Inc(int &x, int y) {
        x = x + y >= mod ? x + y - mod : x + y;
    }
    
    inline void Dec(int &x, int y) {
        x = x - y < 0 ? x - y + mod : x - y;
    }
    
    inline int Add(int x, int y) {
        return x + y >= mod ? x + y - mod : x + y;
    }
    
    inline int Sub(int x, int y) {
        return x - y < 0 ? x - y + mod : x - y;
    }
    
    inline int Pow(ll x, int y) {
        ll ret = 1;
        for (; y; y >>= 1, x = x * x % mod)
            if (y & 1) ret = ret * x % mod;
        return ret;
    }
    
    int w[2][maxn], r[maxn], l, deg;
    
    inline void Init(int len) {
    	int i, x, y;
    	for (l = 0, deg = 1; deg < len; deg <<= 1) ++l;
    	for (i = 0; i < deg; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    	x = Pow(3, (mod - 1) / deg), y = Pow(x, mod - 2), w[0][0] = w[1][0] = 1;
    	for (i = 1; i < deg; ++i) w[0][i] = (ll)w[0][i - 1] * x % mod, w[1][i] = (ll)w[1][i - 1] * y % mod;
    }
    
    inline void DFT(int *p, int opt) {
    	int i, j, k, t, wn, x, y;
    	for (i = 0; i < deg; ++i) if (r[i] < i) swap(p[r[i]], p[i]);
    	for (i = 1; i < deg; i <<= 1)
    		for (t = i << 1, j = 0; j < deg; j += t)
    			for (k = 0; k < i; ++k) {
    				wn = w[opt == -1][deg / t * k];
    				x = p[j + k], y = (ll)p[j + k + i] * wn % mod;
    				p[j + k] = Add(x, y), p[j + k + i] = Sub(x, y);
    			}
    	if (opt == -1) for (i = 0, wn = Pow(deg, mod - 2); i < deg; ++i) p[i] = (ll)p[i] * wn % mod;
    }
    
    int val[maxn], len, tmpa[20][maxn], tmpb[20][maxn], *a, *b;
    
    void Solve(int l, int r, int *ret, int d) {
    	if (l == r) {
    		ret[0] = 1, ret[1] = val[l];
    		return;
    	}
    	int mid = (l + r) >> 1, tmp = r - l + 2, i;
    	Solve(l, mid, tmpa[d], d + 1), Solve(mid + 1, r, tmpb[d], d + 1);
    	a = tmpa[d], b = tmpb[d], Init(tmp), DFT(a, 1), DFT(b, 1);
    	for (i = 0; i < deg; ++i) a[i] = (ll)a[i] * b[i] % mod;
    	DFT(a, -1);
    	for (i = 0; i < tmp; ++i) ret[i] = a[i];
    	for (i = 0; i < deg; ++i) a[i] = b[i] = 0;
    }
    
    int n, k, first[maxn], cnt, size[maxn], ans, tmp[maxn], dv[maxn];
    int f[maxn], fac[maxn], rec[maxn], inv[maxn], g[maxn], h[maxn];
    
    struct Edge {
    	int to, next;
    } edge[maxn];
    
    inline void AddEdge(int u, int v) {
    	edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
    	edge[cnt] = (Edge){u, first[v]}, first[v] = cnt++;
    }
    
    inline int Calc(int len) {
    	int i, ret = 0, r = min(len, k);
    	for (i = 0; i <= r; ++i) Inc(ret, (ll)tmp[i] * fac[k] % mod * inv[k - i] % mod);
    	return ret;
    }
    
    inline void PolyDiv(int len, int v) {
    	int i, inv, invv = Pow(v, mod - 2);
    	for (i = 0; i <= len; ++i) dv[i] = tmp[i], tmp[i] = 0;
    	for (i = len; i; --i)
    		if (dv[i]) {
    			tmp[i - 1] = inv = (ll)dv[i] * invv % mod;
    			Dec(dv[i], (ll)inv * invv % mod), Dec(dv[i - 1], inv);
    		}
    }
    
    inline void PolyMul(int len, int v) {
    	int i;
    	for (i = len; i; --i) Inc(tmp[i], (ll)tmp[i - 1] * v % mod);
    }
    
    inline int Cmp(int x, int y) {
    	return size[x] < size[y];
    }
    
    void Dfs1(int u, int ff) {
    	int e, v, i, j;
    	size[u] = 1;
    	for (e = first[u]; ~e; e = edge[e].next)
    		if ((v = edge[e].to) ^ ff) Dfs1(v, u), Inc(g[u], g[v]), size[u] += size[v];
    	len = 0;
    	for (e = first[u]; ~e; e = edge[e].next)
    		if ((v = edge[e].to) ^ ff) val[++len] = size[v];
    	if (!len) f[u] = 1, Inc(g[u], 1);
    	else {
    		Solve(1, len, tmp, 0), f[u] = Calc(len), Inc(g[u], f[u]), len = 0;
    		for (e = first[u]; ~e; e = edge[e].next)
    			if ((v = edge[e].to) ^ ff) val[++len] = v;
    		sort(val + 1, val + len + 1, Cmp);
    		for (i = 0; i <= len; ++i) rec[i] = tmp[i];
    		for (i = 1; i <= len; ++i) {
    			if (size[val[i]] == size[val[i - 1]]) h[val[i]] = h[val[i - 1]];
    			else {
    				for (j = 0; j <= len; ++j) tmp[j] = rec[j];
    				PolyDiv(len, size[val[i]]), PolyMul(len, n - size[u]);
    				h[val[i]] = Calc(len);
    			}
    		}
    	}
    }
    
    void Dfs2(int u, int ff) {
    	int e, v;
    	for (e = first[u]; ~e; e = edge[e].next)
    		if ((v = edge[e].to) ^ ff) Inc(ans, (ll)Sub(h[v], f[u]) * g[v] % mod), Dfs2(v, u);
    }
    
    int main() {
    	memset(first, -1, sizeof(first));
    	int i, u, v, sum = 0, mx;
    	scanf("%d%d", &n, &k);
    	if (k == 1) return printf("%lld
    ", ((ll)n * (n - 1) >> 1) % mod), 0;
    	mx = max(n, k);
    	for (i = 1; i < n; ++i) scanf("%d%d", &u, &v), AddEdge(u, v);
    	inv[0] = inv[1] = 1;
    	for (i = 2; i <= mx; ++i) inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
    	for (i = 2; i <= mx; ++i) inv[i] = (ll)inv[i - 1] * inv[i] % mod;
    	for (i = fac[0] = 1; i <= mx; ++i) fac[i] = (ll)fac[i - 1] * i % mod;
    	Dfs1(1, 0), Dfs2(1, 0);
    	for (i = 1; i <= n; ++i) Inc(sum, f[i]);
    	sum = (ll)sum * sum % mod;
    	for (i = 1; i <= n; ++i) Dec(sum, (ll)f[i] * f[i] % mod);
    	sum = (ll)sum * inv[2] % mod;
    	Inc(ans, sum), printf("%d
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    Server Application Unavailable 解决办法 (转)
    SQL SERVER:分割函数 split
    Win32汇编_基础
    Win32汇编_异常_筛选器
    创建进程常用函数
    内存常用函数
    桃花庵歌
    文天祥的诗
    Socket I/O模型全接触
    函数指针的神奇
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/10357478.html
Copyright © 2020-2023  润新知