设运算 (op1,op2),一个表示三进制不进位的加法,一个表示不退位的减法
设 (cnt1[x],cnt2[x]) 分别表示 (x) 转成三进制后 (1/2) 的个数
那么
(f_{i,x}=sum f_{i-1,y}b_{cnt1[x~op2~y],cnt2[x~op2~y]})
设 (B_{x,y}=b_{cnt1[x~op2~y],cnt2[x~op2~y]})
那么可以发现 (B_{x,y}=B_{x~op2~y,0})
那么我们要求的就是 (f) 与 (B) 的第一行的 (t) 次卷积的卷积
其中下标运算为 (op1)
那么我们求出 (f) 和 (B) 的"点值表达",快速幂之后变换回去即可
下标运算可以看成是每一位的模 (3) 的循环卷积,用三次单位根 (FWT),每一层手动做一遍长度为 (3) 的 (DFT)
由于题目中 (p) 的性质,可以得到 (3perp p),所以 (3) 有逆元
注意到 (omega_3^2+omega_3+1=0)
把所有数字用 (a+bomega) 表示,重定义运算即可
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace IO {
const int maxn(1 << 21 | 1);
char ibuf[maxn], obuf[maxn], *iS, *iT, *oS = obuf, *oT = obuf + maxn - 1, c, st[66];
int tp, f;
inline char Getc() {
return iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++;
}
template <class Int> inline void In(Int &x) {
for (f = 1, c = Getc(); c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c >= '0' && c <= '9'; c = Getc()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
inline void Flush() {
fwrite(obuf, 1, oS - obuf, stdout);
oS = obuf;
}
inline void Putc(char c) {
*oS++ = c;
if (oS == oT) Flush();
}
template <class Int> void Out(Int x) {
if (!x) Putc('0');
if (x < 0) Putc('-'), x = -x;
while (x) st[++tp] = x % 10 + '0', x /= 10;
while (tp) Putc(st[tp--]);
}
}
using IO :: In;
using IO :: Out;
using IO :: Putc;
using IO :: Flush;
const int maxn(531441);
int mod, m, t, n, bin[20], b[20][20], cnt1[maxn], cnt2[maxn], phi, inv3;
inline int Pow(ll x, int y) {
ll ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
}
inline void Inc(int &x, int y) {
x = x + y >= mod ? x + y - mod : x + y;
}
inline void Dec(int &x, int y) {
x = x - y < 0 ? x - y + mod : x - y;
}
inline int Add(int x, int y) {
return x + y >= mod ? x + y - mod : x + y;
}
inline int Sub(int x, int y) {
return x - y < 0 ? x - y + mod : x - y;
}
struct Complex {
int a, b;
inline Complex(int _a = 0, int _b = 0) {
a = _a, b = _b;
}
inline Complex W1() {
return Complex(Sub(0, b), Sub(a, b));
}
inline Complex W2() {
return Complex(Sub(b, a), Sub(0, a));
}
inline Complex operator +(Complex y) const {
return Complex(Add(a, y.a), Add(b, y.b));
}
inline Complex operator -(Complex y) const {
return Complex(Sub(a, y.a), Sub(b, y.b));
}
inline Complex operator *(Complex y) const {
return Complex(Sub((ll)a * y.a % mod, (ll)b * y.b % mod), Sub(Add((ll)a * y.b % mod, (ll)b * y.a % mod), (ll)b * y.b % mod));
}
inline Complex operator *(int y) const {
return Complex((ll)a * y % mod, (ll)b * y % mod);
}
} coef[maxn], f[maxn], tmp[3];
inline Complex PowComplex(Complex x, int y) {
Complex ret = Complex(1, 0);
for (; y; y >>= 1, x = x * x) if (y & 1) ret = ret * x;
return ret;
}
inline void DFWT(Complex *p, int opt) {
int i, j, k, t;
for (i = 1; i < n; i *= 3)
for (j = 0, t = i * 3; j < n; j += t)
for (k = 0; k < i; ++k) {
tmp[0] = p[j + k], tmp[1] = p[j + k + i], tmp[2] = p[j + k + i + i];
p[j + k] = tmp[0] + tmp[1] + tmp[2];
p[j + k + i] = tmp[0] + tmp[1].W1() + tmp[2].W2();
p[j + k + i + i] = tmp[0] + tmp[1].W2() + tmp[2].W1();
if (opt == -1) {
swap(p[j + k + i], p[j + k + i + i]);
p[j + k] = p[j + k] * inv3;
p[j + k + i] = p[j + k + i] * inv3;
p[j + k + i + i] = p[j + k + i + i] * inv3;
}
}
}
int main() {
freopen("b.in", "r", stdin);
int i, j, x;
In(m), In(t), In(mod);
for (i = bin[0] = 1; i < 20; ++i) bin[i] = bin[i - 1] * 3;
n = bin[m];
if (mod == 1) {
for (i = 0; i < n; ++i) Putc('0'), Putc('
');
return Flush(), 0;
}
x = phi = mod;
for (i = 2; i * i <= x; ++i)
if (x % i == 0) {
phi -= phi / i;
while (x % i == 0) x /= i;
}
if (x > 1) phi -= phi / x;
inv3 = Pow(3, phi - 1);
for (i = 0; i < n; ++i) {
cnt1[i] = cnt1[i / 3] + (i % 3 == 1);
cnt2[i] = cnt2[i / 3] + (i % 3 == 2);
}
for (i = 0; i < n; ++i) In(f[i].a);
for (i = 0; i <= m; ++i)
for (j = 0; j <= m - i; ++j) In(b[i][j]);
for (i = 0; i < n; ++i) coef[i].a = b[cnt1[i]][cnt2[i]];
DFWT(coef, 1), DFWT(f, 1);
for (i = 0; i < n; ++i) f[i] = f[i] * PowComplex(coef[i], t);
DFWT(f, -1);
for (i = 0; i < n; ++i) Out(f[i].a), Putc('
');
return Flush(), 0;
}