• 51NOD1847:奇怪的数学题


    传送门

    Sol

    (f(d)) 表示 (d) 所有约数中第二大的,(low_d) 表示 (d) 的最小质因子

    [f(d)=frac{d}{low_d} ]

    那么

    [sum_{i=1}^{n}sum_{j=1}^{n}sgcd^k(i,j) ]

    [=sum_{i=1}^nsum_{j=1}^{n}f^k(gcd(i,j)) ]

    [=sum_{d=1}^{n}f^k(d)sum_{i=1}^{n}sum_{j=1}^{n}[gcd(i,j)=d] ]

    [=sum_{d=1}^{n}f^k(d)sum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{n}{d} floor}[gcd(i,j)=1] ]

    [=sum_{d=1}^{n}f^k(d)(2sum_{i=1}^{lfloorfrac{n}{d} floor}varphi(i)-1) ]

    可以数论分块,后面的 (varphi) 直接杜教筛
    考虑计算

    [sum_{d=2}^{n}f^k(d)=sum_{d=2}^{n}frac{d}{low_d}^k ]

    (p_j) 表示第 (j) 个质数
    (g(x,i)) 表示 (2)(x) 之间最小质因子大于等于 (p_i) 的或者质数的 (f)(k) 次方和
    (g'(x,i)) 表示 (2)(x) 之间最小质因子大于等于 (p_i) 的或者质数的 (k) 次方和
    (s(i)) 表示小于等于 (p_i) 的质数的 (k) 次方和
    那么就是要求 (g(n, 1))
    (s) 直接 (min25)

    [g(x,i)=g(x,i+1)+sum_{e=1}^{p_i^{e+1}le x}p_i^{k(e-1)}(g'(lfloorfrac{x}{p_i^{e}} floor,i+1)-s(i)+p_i^{k}) ]

    [g'(x,i)=g'(x,i+1)+sum_{e=1}^{p_i^{e+1}le x}p_i^{ke}(g'(lfloorfrac{x}{p_i^{e}} floor,i+1)-s(i)+p_i^{k}) ]

    这里要用到自然幂数和求和,用第二类斯特林数就好了

    # include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef unsigned int uint;
    
    inline uint Pow(uint x, int y) {
    	register uint ret = 1;
    	for (; y; y >>= 1, x = x * x) if (y & 1) ret = ret * x;
    	return ret;
    }
    
    const int maxn(1e6 + 5);
    
    int pr[maxn], tot, k, d, id1[maxn], id2[maxn], cnt, phi[maxn];
    uint n, s[55][55], f[maxn], g[maxn], val[maxn], sk[maxn];
    uint s1[maxn], s2[maxn], sphi[maxn], sp[maxn];
    bitset <maxn> ispr;
    
    inline void Sieve(int mx) {
    	register int i, j;
    	for (phi[1] = 1, ispr[1] = 1, i = 2; i <= mx; ++i) {
    		if (!ispr[i]) pr[++tot] = i, sk[tot] = sk[tot - 1] + Pow(i, k), phi[i] = i - 1;
    		for (j = 1; j <= tot && pr[j] * i <= mx; ++j) {
    			ispr[i * pr[j]] = 1;
    			if (i % pr[j]) phi[i * pr[j]] = phi[i] * (pr[j] - 1);
    			else {
    				phi[i * pr[j]] = phi[i] * pr[j];
    				break;
    			}
    		}
    	}
    	for (i = 1; i <= mx; ++i) sphi[i] = sphi[i - 1] + phi[i];
    }
    
    # define ID(x) ((x) <= d ? id1[x] : id2[n / (x)])
    
    inline uint Sum(uint x) {
    	register uint i, j, v = 0, t, r, tmp = k <= x ? k : x;
    	for (i = 1; i <= tmp; ++i) {
    		t = i + 1, r = s[k][i];
    		for (j = x - i + 1; j <= x + 1; ++j)
    			if (t > 1 && j % t == 0) r *= j / t, t = 1;
    			else r = r * j;
    		v += r;
    	}
    	return v;
    }
    
    uint Sumphi(uint x) {
        if (x <= d) return sphi[x];
        if (sp[ID(x)]) return sp[ID(x)];
        register uint ans = (x & 1) ? ((x + 1) >> 1) * x : (x >> 1) * (x + 1), i, j;
        for (i = 2; i <= x; i = j + 1) j = x / (x / i), ans -= Sumphi(x / i) * (j - i + 1);
        return sp[ID(x)] = ans;
    }
    
    int main() {
    	register uint i, j, e, ans = 0, lst = 0, cur, r, v, tmp, now;
    	scanf("%u%d", &n, &k), Sieve(d = sqrt(n));
    	for (i = 1; i <= 50; ++i)
    		for (s[i][1] = 1, j = 2; j <= i; ++j)
    			s[i][j] = s[i - 1][j] * j + s[i - 1][j - 1];
    	for (i = 1; i <= n; i = j + 1) {
    		val[++cnt] = n / i, j = n / (n / i);
    		val[cnt] <= d ? id1[val[cnt]] = cnt : id2[n / val[cnt]] = cnt;
    		f[cnt] = val[cnt] - 1, g[cnt] = Sum(val[cnt]) - 1;
    	}
    	for (i = 1; i <= tot && pr[i] * pr[i] <= n; ++i)
    		for (j = 1; j <= cnt && pr[i] * pr[i] <= val[j]; ++j) {
    			f[j] -= f[ID(val[j] / pr[i])] - i + 1;
    			g[j] -= (sk[i] - sk[i - 1]) * (g[ID(val[j] / pr[i])] - sk[i - 1]);
    		}
    	for (i = 1; i <= cnt; ++i) s1[i] = f[i], s2[i] = g[i];
    	for (r = 1; r <= tot && pr[r] * pr[r] <= n; ++r);
    	for (i = r - 1; i; --i)
    		for (tmp = sk[i] - sk[i - 1], j = 1; j <= cnt && pr[i] * pr[i] <= val[j]; ++j)
    			for (cur = e = 1, v = pr[i]; v <= val[j] / pr[i]; ++e, v *= pr[i], cur *= tmp)
    				now = (s2[ID(val[j] / v)] - sk[i] + tmp) * cur, s1[j] += now, s2[j] += tmp * now;
    	for (i = 1; i <= n; i = j + 1) {
    		j = n / (n / i), cur = s1[ID(j)];
    		ans += (cur - lst) * (Sumphi(n / i) * 2 - 1), lst = cur;
    	}
    	printf("%u
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    Review Python装饰器
    Python自动化开发三元运算 列表解析 生成器表达式
    Python自动化开发函数02
    Python自动化开发函数03
    Python自动化开发文件
    ELK02ELK收集Linux系统平台应用系统日志
    ELK01Elasticsearch
    html5调用摄像头并拍照
    Docker 安装 PostgreSQL
    《TensorFlow+Keras自然语言处理实战》图书介绍
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/10162187.html
Copyright © 2020-2023  润新知