description
求树上长度为(k)的路径是否存在。
data range
[nle 10000,kle 10000000
]
solution
点分治复习。。。
使用普通的点分治枚举路径模板即可。
一个小细节
本人初学点分治的时候是这样写的
int sum,rt,sz[N],w[N];bool vis[N];
void getrt(int u,int ff){//找到对应连通块的重心
sz[u]=1;w[u]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff||vis[v])continue;
getrt(v,u);sz[u]+=sz[v];
w[u]=max(w[u],sz[v]);
}
w[u]=max(w[u],blk-sz[u]);
if(w[rt]>w[u])rt=u;
}
void solve(int u){//递归分治
vis[u]=1;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(vis[v])continue;
rt=0;blk=sz[v];
getrt(v,0);
solve(rt);
}
}
int main()
{
//...
rt=0;w[0]=sum=n;
getrt(1,0);
solve(rt);
return 0;
}
现在感觉这样写有问题。
关键出在直接赋值(sum=sz[v])上。
给出一棵树:
我们第一次选择的重心是节点(3)
然而这时(sz[1]=6)
于是我们递归解决上面部分的时候重心就会受到影响
然后就可能会(T)
解决方法是两边(dfs)像这样似乎常数又加大了:
int sum,rt,sz[N],w[N];bool vis[N];
void getrt(int u,int ff){//找到对应连通块的重心
sz[u]=1;w[u]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff||vis[v])continue;
getrt(v,u);sz[u]+=sz[v];
w[u]=max(w[u],sz[v]);
}
w[u]=max(w[u],blk-sz[u]);
if(w[rt]>w[u])rt=u;
}
void solve(int u){//递归分治
vis[u]=1;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(vis[v])continue;
rt=0;blk=sz[v];
getrt(v,0);
getrt(rt,0);//第二遍dfs
solve(rt);
}
}
int main()
{
//...
rt=0;w[0]=sum=n;
getrt(1,0);
getrt(rt,0);//第二遍dfs
solve(rt);
return 0;
}
Code
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const int N=10010;
const int M=10000010;
const dd eps=1e-5;
const int inf=2147483647;
const ll INF=1ll<<60;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
}
int n,m,rt,blk,k,flg;
int head[N],nxt[N<<1],to[N<<1],val[N<<1],cnt;
il void add(int u,int v,int w){
to[++cnt]=v;val[cnt]=w;nxt[cnt]=head[u];head[u]=cnt;
}
int sz[N],w[N];bool vis[N],tong[M];
void getrt(int u,int ff){
sz[u]=1;w[u]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff||vis[v])continue;
getrt(v,u);sz[u]+=sz[v];
w[u]=max(w[u],sz[v]);
}
w[u]=max(w[u],blk-sz[u]);
if(w[rt]>w[u])rt=u;
}
int dep[N],cal[N],top;
void getdep(int u,int ff){
cal[++top]=dep[u];
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff||vis[v])continue;
dep[v]=dep[u]+val[i];if(dep[v]<=k)getdep(v,u);
}
}
void getcl(int u,int ff){
tong[dep[u]]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff||vis[v])continue;
getcl(v,u);
}
}
void solve(int u){
vis[u]=1;dep[u]=0;cal[++top]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(vis[v])continue;
dep[v]=dep[u]+val[i];getdep(v,u);
for(RG int j=1;j<=top;j++)
if(tong[k-cal[j]]||cal[j]==k)flg=1;
for(RG int j=1;j<=top;j++)
tong[cal[j]]=1;
top=0;
}
getcl(u,0);
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(vis[v])continue;
rt=0;blk=sz[v];
getrt(v,0);
getrt(rt,0);
solve(rt);
}
}
int main()
{
n=read();m=read();
for(RG int i=1,u,v,w;i<n;i++){
u=read();v=read();w=read();
add(u,v,w);add(v,u,w);
}
for(RG int i=1;i<=m;i++){
k=read();flg=0;
memset(vis,0,sizeof(vis));
rt=0;blk=w[0]=n;
getrt(1,0);
getrt(rt,0);
solve(rt);
flg?puts("AYE"):puts("NAY");
}
return 0;
}