题面在这里
题意
开始时袋中有(t)种小球,第(i)种小球有(t_i)个,之后每次等概率取出一个球,第(i)次取球时观察这个球的颜色(c_i)放回并向袋中加入(d)个颜色为(c_i)的球;
给出一组询问([x_i,y_i](1le ile n)),求同时满足第(x_i)次取球的颜色为(y_i)的概率
(1≤t,n≤1000, 1≤a_k ,d≤10, 1≤x_1<x_2<…<x_n≤10000, 1≤y_k≤t)
hint
有没有注意到(1≤x_1<x_2<…<x_n≤10000)这个条件?
感觉又鬼畜又没有用对么?
那么我们把这个条件删掉
其实这个条件仅仅是在给你一个提示
sol
其实我做题的时候也不知道这个条件有什么用...于是我就没有做出来
如果(x_i=i)你还不会做?直接模拟即可
所以这道题直接模拟就可以了。
!!!!!!是的很震惊对吧
给你(1≤x_1<x_2<…<x_n≤10000)这个条件,
就是让你考虑怎么把这个条件化成(x_i=i)的......
接下来我们开始证明,
如果仅仅考虑一次抽取的情况,每次抽到颜色(c)的概率都是一样的,
即第(i)次抽到颜色(c)的概率和第(i+1)次抽到颜色(c)的概率相同
设第(i)次抽之前,袋子里总共有(tot)个球,有(a)个颜色为(c)的球(update 4.4:感谢 @GuessYCB的更正 orz)
那么第(i)次抽抽到(c)的概率显然是(P_i=frac{a}{tot})
那么第(i+1)次抽抽到(c)的概率呢?
[P_{i+1}=frac{a}{tot} imesfrac{a+d}{tot+d}+(1-frac{a}{tot}) imesfrac{a}{tot+d}=frac{a}{tot}=P_i
]
嗯是的
于是直接把([x_1,x_2,x_3,...,x_n])转换为([1,2,3,...,n])即可
注意高精(可以考虑先(fact),最后再化系数)
代码
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e9+7;
const int N=5010;
const int M=20010;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
}
int t,n,d,a[N],y[N],sum;
int pri[M],vis[M];
il void sieve(){
vis[1]=1;
for(RG int i=2;i<M;i++){
if(!vis[i])pri[++pri[0]]=i;
for(RG int j=1;j<=pri[0]&&1ll*pri[j]*i<M;j++){
vis[i*pri[j]]=1;if(i%pri[j]==0)break;
}
}
}
int sys[3][M];
il void fact(int x,int id){
for(RG int j=1;j<=pri[0]&&1ll*pri[j]*pri[j]<=x;j++)
while(x%pri[j]==0)sys[id][j]++,x/=pri[j];
for(RG int j=1;j<=pri[0]&&1ll*pri[j]<=x;j++){
while(x%pri[j]==0)sys[id][j]++,x/=pri[j];if(x==1)break;
}
}
struct bignumber{
int ws,s[5005];
il void init(){ws=s[1]=1;}
il void times(int x){
if(!ws)init();
for(RG int i=1;i<=ws;i++)s[i]*=x;
for(RG int i=1;i<=ws;i++)
if(s[i]>=10)s[i+1]+=s[i]/10,s[i]%=10;
while(s[ws+1])ws++,s[ws+1]+=s[ws]/10,s[ws]%=10;
}
il void print(){
for(RG int i=ws;i;i--)printf("%d",s[i]);
}
}A[3];
il void solve(){
for(RG int i=1,minn;i<=pri[0];i++){
minn=min(sys[1][i],sys[2][i]);
sys[1][i]-=minn;sys[2][i]-=minn;
}
A[1].init();A[2].init();
for(RG int id=1;id<=2;id++)
for(RG int i=1;i<=pri[0];i++)
for(RG int j=1;j<=sys[id][i];j++)A[id].times(pri[i]);
A[2].print();printf("/");A[1].print();puts("");
}
int main()
{
t=read();n=read();d=read();sieve();
for(RG int i=1;i<=t;i++)a[i]=read(),sum+=a[i];
for(RG int i=1;i<=n;i++)
read(),y[i]=read(),fact(a[y[i]],2),a[y[i]]+=d,fact(sum,1),sum+=d;
solve();return 0;
}