大致题意:
平面上有n个点,求一个最小的圆覆盖住所有点
最小覆盖圆裸题
学习了一波最小覆盖圆算法
1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #include<algorithm> 5 #include<queue> 6 #include<set> 7 #include<map> 8 #include<stack> 9 #include<time.h> 10 #include<cstdlib> 11 #include<cmath> 12 #include<list> 13 using namespace std; 14 #define MAXN 100100 15 #define eps 1e-9 16 #define For(i,a,b) for(int i=a;i<=b;i++) 17 #define Fore(i,a,b) for(int i=a;i>=b;i--) 18 #define lson l,mid,rt<<1 19 #define rson mid+1,r,rt<<1|1 20 #define mkp make_pair 21 #define pb push_back 22 #define cr clear() 23 #define sz size() 24 #define met(a,b) memset(a,b,sizeof(a)) 25 #define iossy ios::sync_with_stdio(false) 26 #define fre freopen 27 #define pi acos(-1.0) 28 #define inf 1e6+7 29 #define Vector Point 30 const int Mod=1e9+7; 31 typedef unsigned long long ull; 32 typedef long long ll; 33 int dcmp(double x){ 34 if(fabs(x)<=eps) return 0; 35 return x<0?-1:1; 36 } 37 struct Point{ 38 double x,y; 39 Point(double x=0,double y=0):x(x),y(y) {} 40 bool operator < (const Point &a)const{ 41 if(x==a.x) return y<a.y; 42 return x<a.x; 43 } 44 Point operator - (const Point &a)const{ 45 return Point(x-a.x,y-a.y); 46 } 47 Point operator + (const Point &a)const{ 48 return Point(x+a.x,y+a.y); 49 } 50 Point operator * (const double &a)const{ 51 return Point(x*a,y*a); 52 } 53 Point operator / (const double &a)const{ 54 return Point(x/a,y/a); 55 } 56 void read(){ 57 scanf("%lf%lf",&x,&y); 58 } 59 void out(){ 60 cout<<"debug: "<<x<<" "<<y<<endl; 61 } 62 bool operator == (const Point &a)const{ 63 return dcmp(x-a.x)==0 && dcmp(y-a.y)==0; 64 } 65 }; 66 double Dot(Vector a,Vector b) { 67 return a.x*b.x+a.y*b.y; 68 } 69 double dis(Vector a) { 70 return sqrt(Dot(a,a)); 71 } 72 double Cross(Point a,Point b){ 73 return a.x*b.y-a.y*b.x; 74 } 75 int n; 76 Point p[5005]; 77 double r; 78 Point cp; 79 bool inCrcle(Point tp){ 80 return dcmp(dis(tp-cp)-r)<=0; 81 } 82 void getCrcle(Point a,Point b,Point c){ 83 Point p1=b-a,p2=c-a; 84 double d=2*Cross(p1,p2); 85 cp.x=(p2.y*Dot(p1,p1)-p1.y*Dot(p2,p2))/d+a.x; 86 cp.y=(p1.x*Dot(p2,p2)-p2.x*Dot(p1,p1))/d+a.y; 87 r=dis(a-cp); 88 } 89 void solve(){ 90 For(i,0,n-1) p[i].read(); 91 random_shuffle(p,p+n); 92 cp=p[0];r=0; 93 For(i,1,n-1) { 94 if(!inCrcle(p[i])){ 95 r=0; 96 cp=p[i]; 97 For(j,0,i-1) { 98 if(!inCrcle(p[j])) { 99 r=dis(p[j]-p[i])/2; 100 cp=(p[j]+p[i])/2; 101 For(k,0,j-1) { 102 if(!inCrcle(p[k])) 103 getCrcle(p[i],p[j],p[k]); 104 } 105 } 106 } 107 } 108 } 109 printf("%.2lf %.2lf %.2lf ",cp.x,cp.y,r); 110 } 111 int main(){ 112 // fre("in.txt","r",stdin); 113 int t=0; 114 while(~scanf("%d",&n) && n) solve(); 115 return 0; 116 }