• LOJ#6703. 小 Q 的序列


    题面

    题解

    (f_{i, j}) 为前 (i) 个数选了 (j) 个的权值和,那么有:

    [f_{i, j} = f_{i - 1, j} + (a_i + j) f_{i - 1, j - 1} ]

    (F_i(x) = sum_j f_{i, j} x^j),于是可以得出 (F_i = (1 + x + a_ix) F_{i - 1} + x^2 F'_{i-1})

    然后发现方程里面出现了 (x^2 F'_{i-1}) 这种极度不友好的项,虽然能做但是有亿点点麻烦。

    考虑将 (f_{i, j}) 的第二维 reverse 一下,这样子就有:

    [f_{i, j} = f_{i - 1, j - 1} + (a_i + i - j) f_{i - 1, j} ]

    (b_i = a_i + i),那么 dp 用生成函数的形式表示就是

    [F_i = xF_{i - 1} + b_i F_{i - 1} - xF'_{i-1} ]

    观察到,如果没有 (xF_{i - 1}) 这一项,那么转移是非常 trivial 的,所以说考虑将 (F_i) 的转移方程向这个方向靠拢。

    (H_i = F_iG),那么我们希望能够有:

    [H_i = b_i H_{i-1} - xH'_{i-1} ]

    展开得

    [F_iG = b_iF_{i-1}G - x(F'_{i-1}G+F_{i-1}G') ]

    而由原来的方程可知

    [F_iG = xF_{i - 1}G + b_i F_{i - 1}G - xF'_{i-1}G ]

    那么要满足 (H_i) 的转移方程成立的条件,只需要 (xF_{i-1}G = -xF_{i-1}G') 即可,即 (G(x) = e^{-x})

    这样,如果知道了 (H_n),那么 (F_n = e^x H_n)

    (H_i) 的生成函数递推式展开就可以知道 (h_{i, j} = (b_i - j) h_{i - 1, j}),就有 (h_{0, j} = frac {(-1)^j} {j!})(h_{n, j} = h_{0, j} prod_{1 leq i leq n} (b_i - j)),多点求值即可。

    代码

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
    
    inline int read()
    {
    	int data = 0, w = 1; char ch = getchar();
    	while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    	if (ch == '-') w = -1, ch = getchar();
    	while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
    	return data * w;
    }
    
    const int N(3e5 + 10), Mod(998244353);
    inline int upd(const int &x) { return x + (x >> 31 & Mod); }
    int fastpow(int x, int y)
    {
    	int ans = 1;
    	for (; y; y >>= 1, x = 1ll * x * x % Mod)
    		if (y & 1) ans = 1ll * ans * x % Mod;
    	return ans;
    }
    
    namespace Poly
    {
    	int w[N], L, invL, Len = 1;
    	void Init(int n)
    	{
    		for (L = 1; L < n; L <<= 1); invL = fastpow(L, Mod - 2);
    		for (int &i = Len, t; i < L; i <<= 1)
    		{
    			w[i] = 1, t = fastpow(3, Mod / (i << 1));
    			for (int j = 1; j < i; j++) w[i + j] = 1ll * w[i + j - 1] * t % Mod;
    		}
    	}
    
    	void DFT(int *p)
    	{
    		for (int i = L >> 1, s = L; i; i >>= 1, s >>= 1)
    			for (int j = 0; j < L; j += s) for (int k = 0, o = i; k < i; ++k, ++o)
    			{
    				int x = p[j + k], y = p[i + j + k];
    				p[j + k] = upd(x + y - Mod), p[i + j + k] = 1ll * w[o] * upd(x - y) % Mod;
    			}
    	}
    
    	void IDFT(int *p)
    	{
    		for (int i = 1, s = 2; i < L; i <<= 1, s <<= 1)
    			for (int j = 0; j < L; j += s) for (int k = 0, o = i; k < i; ++k, ++o)
    			{
    				int x = p[j + k], y = 1ll * w[o] * p[i + j + k] % Mod;
    				p[j + k] = upd(x + y - Mod), p[i + j + k] = upd(x - y);
    			}
    		std::reverse(p + 1, p + L);
    		for (int i = 0; i < L; i++) p[i] = 1ll * p[i] * invL % Mod;
    	}
    
    	void Inv(int *a, int *b, int n)
    	{
    		if (n == 1) return (void) (*b = fastpow(*a, Mod - 2));
    		static int c[N], d[N]; Inv(a, b, (n + 1) >> 1), Init(n * 1.5 + 0.5);
    		std::memset(c, 0, L << 2), std::memcpy(c, a, n << 2), DFT(c);
    		std::memset(d, 0, L << 2), std::memcpy(d, b, n << 2), DFT(d);
    		for (int i = 0; i < L; i++) c[i] = 1ll * c[i] * d[i] % Mod * d[i] % Mod; IDFT(c);
    		for (int i = (n + 1) >> 1; i < n; i++) b[i] = upd(-c[i]);
    	}
    
    	void Mul(const int *a, const int *b, int *c, int n, int m)
    	{
    		static int f[N], g[N]; Init(n + m - 1);
    		std::memset(f, 0, L << 2), std::memcpy(f, a, n << 2), DFT(f);
    		std::memset(g, 0, L << 2), std::memcpy(g, b, m << 2), DFT(g);
    		for (int i = 0; i < L; i++) f[i] = 1ll * f[i] * g[i] % Mod; IDFT(f);
    		std::memcpy(c, f, (n + m - 1) << 2);
    	}
    
    	void MulT(const int *a, const int *b, int *c, int n, int m, int k)
    	{
    		static int f[N], g[N]; std::memcpy(f, a, n << 2), std::memcpy(g, b, m << 2);
    		std::reverse(g, g + m), Mul(f, g, f, n, m), std::memcpy(c, f + m - 1, k << 2);
    	}
    }
    
    inline void Mul(const std::vector<int> &f, const std::vector<int> &g, std::vector<int> &h)
    	{ Poly::Mul(&f[0], &g[0], &h[0], f.size(), g.size()); }
    inline void MulT(const std::vector<int> &f, const std::vector<int> &g, std::vector<int> &h)
    	{ Poly::MulT(&f[0], &g[0], &h[0], f.size(), g.size(), h.size()); }
    
    std::vector<int> v[N << 2], w[N << 2];
    void getPoly(const int *a, int x, int l, int r)
    {
    	if (l == r) return (void) (v[x] = {1, upd(-a[l])}, w[x] = {0});
    	int mid = (l + r) >> 1, ls = x << 1, rs = ls | 1;
    	getPoly(a, ls, l, mid), getPoly(a, rs, mid + 1, r);
    	v[x].resize(r - l + 2), w[x].resize(r - l + 1), Mul(v[ls], v[rs], v[x]);
    }
    
    void Div(int *ans, int x, int l, int r)
    {
    	if (l == r) return (void) (ans[l] = w[x].front());
    	int mid = (l + r) >> 1, ls = x << 1, rs = ls | 1;
    	MulT(w[x], v[ls], w[rs]), MulT(w[x], v[rs], w[ls]);
    	Div(ans, ls, l, mid), Div(ans, rs, mid + 1, r);
    }
    
    void Solve(const int *f, const int *a, int *ans, int n)
    {
    	static int g[N]; getPoly(a, 1, 1, n - 1), Poly::Inv(&v[1][0], g, n);
    	Poly::MulT(f, g, &w[1][0], n, n, w[1].size()), Div(ans, 1, 1, n - 1);
    }
    
    int n, a[N], b[N], ans[N], fac[N], inv[N];
    std::vector<int> Prod(int l = 1, int r = n)
    {
    	if (l == r) return {a[l], Mod - 1}; int mid = (l + r) >> 1; std::vector<int> res(r - l + 2);
    	return Mul(Prod(l, mid), Prod(mid + 1, r), res), res;
    }
    
    int main()
    {
    #ifndef ONLINE_JUDGE
    	file(cpp);
    #endif
    	n = read(), ans[0] = fac[0] = 1;
    	for (int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
    	inv[n] = fastpow(fac[n], Mod - 2);
    	for (int i = n; i; i--) inv[i - 1] = 1ll * inv[i] * i % Mod;
    	for (int i = 1; i <= n; i++) a[i] = upd(read() + i - Mod), b[i] = i;
    	for (int i = 1; i <= n; i++) ans[0] = 1ll * ans[0] * a[i] % Mod;
    	Solve(&Prod()[0], b, ans, n + 1);
    	for (int i = 0; i <= n; i++)
    		if (i & 1) ans[i] = upd(-1ll * ans[i] * inv[i] % Mod);
    		else ans[i] = 1ll * ans[i] * inv[i] % Mod;
    	std::vector<int> f(ans, ans + n + 1), g(inv, inv + n + 1), h(f.size() + g.size() - 1);
    	Mul(f, g, h); int res = 0;
    	for (int i = 0; i < n; i++) res = upd(res + h[i] - Mod);
    	printf("%d
    ", res);
    	return 0;
    }
    
  • 相关阅读:
    ZOJ 2604 Little Brackets DP
    js实现回放拖拽轨迹-------Day48
    Android蓝牙开发
    linux中的两个很重要的信号:SIGALRM信号和SIGCHID信号
    MySQL mysqldump数据导出详解
    JFinal redis cluster集群插件
    nginx平滑升级
    温故而知新-String类
    Linux环境变量具体解释
    android消息机制
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/14329548.html
Copyright © 2020-2023  润新知