题面
题解
直接求解比较麻烦,考虑将问题进行转化。
设序列(a = {3, 1, 4, 2, 5}, b = {3, 2, 4, 1, 5}),那么我们构造一个正方形方格,将(a)放在横行,(b)放在竖行,可以画出下图。
那么我们可以发现,方案数就是从左上走到右下的不同序列个数。
这样我们可以( exttt{d} exttt{p}),设(f[i][j])表示走到((i, j))的方案数,那么显然(f[i][j] = f[i - 1][j] + f[i][j - 1])。
不过这样转移发现有重复。考虑到(a_i = b_j)是(f[i][j])出现重复的必要条件,通过推导可以得出方程:(f[i][j] = f[i][j - 1] + f[i - 1][j] + [a_i = b_j]sum_{k geq 1}[a_{i - k} = b_{j - k}]f[i - k][j - k]mathrm{C}(t - 1)),其中(mathrm{C})表示卡特兰数,(t)表示(1)到(k)之间有多少个(l)满足(a_{i - l} = b_{i - l})。
由于(a_i = b_j)只有(n)对,所以时间复杂度为(mathrm{O}(n ^ 2))。
代码
#include <cstdio>
#include <algorithm>
#include <vector>
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(2010), Mod(1e9 + 7);
int n, m, fac[N], inv[N], A[N], B[N], f[N][N];
inline int C(int n) { return 1ll * fac[n << 1] * inv[n] % Mod * inv[n + 1] % Mod; }
int fastpow(int x, int y)
{
int ans = 1;
for (; y; y >>= 1, x = 1ll * x * x % Mod)
if (y & 1) ans = 1ll * ans * x % Mod;
return ans;
}
int main()
{
n = read(), m = n << 1, fac[0] = inv[0] = 1, f[1][1] = 1;
for (int i = 1; i <= m; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
inv[m] = fastpow(fac[m], Mod - 2);
for (int i = m - 1; i; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % Mod;
for (int i = 1; i <= n; i++) A[i] = read();
for (int i = 1; i <= n; i++) B[i] = read();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
{
if (i > 1 || j > 1) f[i][j] = (f[i - 1][j] + f[i][j - 1]) % Mod;
if (A[i] == B[j]) for (int k = 1, cnt = 0; k < i && k < j; k++)
if (A[i - k] == B[j - k])
f[i][j] = (f[i][j] - 1ll * C(cnt) *
f[i - k][j - k] % Mod + Mod) % Mod, ++cnt;
}
printf("%d
", f[n][n]);
return 0;
}