• 【HNOI2013】消毒


    题面

    题解

    当只有二维时,就是一个二分图匹配的板子题

    三维的时候就很好做了,暴力枚举一维的情况,因为(min(x,y,z) = sqrt{5000} < 18),于是时间复杂度有保证

    代码

    #include<cstdio>
    #include<cstring>
    #include<cctype>
    #include<algorithm>
    #define RG register
    #define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
    #define clear(x, y) memset(x, y, sizeof(x))
    
    inline int read()
    {
    	int data = 0, w = 1; char ch = getchar();
    	while(ch != '-' && (!isdigit(ch))) ch = getchar();
    	if(ch == '-') w = -1, ch = getchar();
    	while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
    	return data * w;
    }
    
    const int maxn(5010);
    struct edge { int next, to; } e[maxn];
    int head[maxn], e_num, a, b, c, Min, pos[4][maxn], vis[maxn], match[maxn], clean[maxn], ans, cnt, T;
    
    inline void add_edge(int from, int to) { e[++e_num] = (edge) {head[from], to}; head[from] = e_num; }
    bool dfs(int x)
    {
    	for(RG int i = head[x]; i; i = e[i].next)
    	{
    		int to = e[i].to; if(vis[to]) continue; vis[to] = true;
    		if(!match[to] || dfs(match[to])) return match[to] = x, true;
    	}
    	return false;
    }
    
    inline void Doit(int x)
    {
    	using std::fill; e_num = 0;
    	fill(head + 1, head + b + 1, 0);
    	fill(match + 1, match + c + 1, 0);
    	fill(clean + 1, clean + a + 1, 1);
    	int res = 0;
    	for(RG int i = 0; i < a; i++)
    		if(x & (1 << i)) clean[i + 1] = 0, ++res;
    	for(RG int i = 1; i <= cnt; i++)
    		if(clean[pos[1][i]]) add_edge(pos[2][i], pos[3][i]);
    	for(RG int i = 1; i <= b; i++)
    	{
    		fill(vis + 1, vis + c + 1, 0);
    		if(dfs(i)) ++res;
    	}
    	ans = std::min(ans, res);
    }
    
    int main()
    {
    	T = read();
    	while(T--)
    	{
    		cnt = 0; ans = 0x3f3f3f3f;
    		a = read(); b = read(); c = read(); Min = std::min(std::min(a, b), c);
    		for(RG int i = 1, x; i <= a; i++)
    			for(RG int j = 1; j <= b; j++)
    				for(RG int k = 1; k <= c; k++)
    					if((x = read())) ++cnt, pos[1][cnt] = i, pos[2][cnt] = j, pos[3][cnt] = k;
    		using std::swap;
    		if(Min == b) swap(a, b), swap(pos[1], pos[2]);
    		if(Min == c) swap(a, c), swap(pos[1], pos[3]);
    		for(RG int i = 0; i < (1 << a); i++) Doit(i);
    		printf("%d
    ", ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    决战72hours
    学习中的十七条建议
    数学建模终结篇
    数学建模(7)建模开始
    ASP升级程序
    为blog挑选logo
    Mysql源代码分析系列(4): 主要调用流程(续)转载
    AS学习步骤
    什么是敏捷软件测试[转]
    Mysql源代码分析(6): Plugin架构介绍(续)转载
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/10396342.html
Copyright © 2020-2023  润新知