题面
题解
将权值排序,则分组一定是连续的
设$f[i]$表示前$i$头牛的最小代价,则($a[i]$为$i$的权值):
$$ f[i] = f[j - 1] + sum[i] - sum[j - 1] - (i - j + 1) * a[j] $$
套上斜率优化的板子即可。
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
const int maxn(5e5 + 10);
int n, t, q[maxn];
long long sum[maxn], a[maxn], f[maxn];
inline long long x(int i) { return a[i]; }
inline long long y(int i) { return f[i - 1] - sum[i - 1] + (i - 1) * a[i]; }
inline bool check(int i, int j, int k)
{
return (y(i) - y(j)) * (x(j) - x(k)) <= (y(j) - y(k)) * (x(i) - x(j));
}
int main()
{
while(~scanf("%d%d", &n, &t))
{
for(RG int i = 1; i <= n; i++) scanf("%lld", a + i);
std::sort(a + 1, a + n + 1);
for(RG int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
int S = t << 1, head = 1, tail = 0;
for(RG int i = t; i < S; i++) f[i] = sum[i] - i * a[1];
for(RG int i = S; i <= n; i++)
{
while(head < tail && check(i - t + 1, q[tail], q[tail - 1])) --tail;
q[++tail] = i - t + 1;
while(head < tail && (y(q[head + 1]) - y(q[head]))
<= (x(q[head + 1]) - x(q[head])) * i) ++head;
f[i] = f[q[head] - 1] + sum[i] - sum[q[head] - 1] -
(i - q[head] + 1) * a[q[head]];
}
printf("%lld
", f[n]);
}
return 0;
}