• 数据结构41:回溯法解决八皇后问题


    回溯法(八皇后问题)

    回溯法,又被称为“试探法”。解决问题时,每进行一步,都是抱着试试看的态度,如果发现当前选择并不是最好的,或者这么走下去肯定达不到目标,立刻做回退操作重新选择。这种走不通就回退再走的方法就是回溯法。

    例如,在解决列举集合 {1,2,3} 中所有子集的问题中,就可以使用回溯法。从集合的开头元素开始,对每个元素都有两种选择:取还是舍。当确定了一个元素的取舍之后,再进行下一个元素,直到集合最后一个元素。其中的每个操作都可以看作是一次尝试,每次尝试都可以得出一个结果。将得到的结果综合起来,就是集合的所有子集。

    实现代码为:
    #include <stdio.h>
    //设置一个数组,数组的下标表示集合中的元素,所以数组只用下标为1,2,3的空间 int set[5];
    //i代表数组下标,n表示集合中最大的元素值 void PowerSet(int i,int n)
    {   
    //当i>n时,说明集合中所有的元素都做了选择,开始判断   if (i>n)
      {     
    for (int j=1; j<=n; j++)
        {       
    //如果树组中存放的是 1,说明在当初尝试时,选择取该元素,即对应的数组下标,所以,可以输出       if (set[j] == 1)
          {         printf(
    "%d", j);       }     }     printf(" ");   }
      else
      {     //如果选择要该元素,对应的数组单元中赋值为1;反之,赋值为0。然后继续向下探索     set[i] = 1;
        PowerSet(i+1, n);     set[i] = 0;
        PowerSet(i+1, n);   } }
    int main()
    {   
    int n = 3;   for (int i=0; i<5; i++)
      {     
    set[i] = 0;   }   PowerSet(1, n);   return 0; }
    运行结果:
    1 2 3 1 2 1 3 1 2 3 2 3

    回溯VS递归

    很多人认为回溯和递归是一样的,其实不然。在回溯法中可以看到有递归的身影,但是两者是有区别的。

    回溯法从问题本身出发,寻找可能实现的所有情况。和穷举法的思想相近,不同在于穷举法是将所有的情况都列举出来以后再一一筛选,而回溯法在列举过程如果发现当前情况根本不可能存在,就停止后续的所有工作,返回上一步进行新的尝试。

    递归是从问题的结果出发,例如求 n!,要想知道 n!的结果,就需要知道 n*(n-1)! 的结果,而要想知道 (n-1)! 结果,就需要提前知道 (n-1)*(n-2)!。这样不断地向自己提问,不断地调用自己的思想就是递归。

    回溯和递归唯一的联系就是,回溯法可以用递归思想实现。

    回溯法与树的遍历

    使用回溯法解决问题的过程,实际上是建立一棵“状态树”的过程。例如,在解决列举集合{1,2,3}所有子集的问题中,对于每个元素,都有两种状态,取还是舍,所以构建的状态树为:

    图1 状态树

    回溯法的求解过程实质上是先序遍历“状态树”的过程。树中每一个叶子结点,都有可能是问题的答案。图 1 中的状态树是满二叉树,得到的叶子结点全部都是问题的解。

    在某些情况下,回溯法解决问题的过程中创建的状态树并不都是满二叉树,因为在试探的过程中,有时会发现此种情况下,再往下进行没有意义,所以会放弃这条死路,回溯到上一步。在树中的体现,就是在树的最后一层不是满的,即不是满二叉树,需要自己判断哪些叶子结点代表的是正确的结果。

    回溯法解决八皇后问题

    八皇后问题是以国际象棋为背景的问题:有八个皇后(可以当成八个棋子),如何在 8*8 的棋盘中放置八个皇后,使得任意两个皇后都不在同一条横线、纵线或者斜线上。

    图 2 八皇后问题示例(#代表皇后)

    八皇后问题是使用回溯法解决的典型案例。算法的解决思路是:
    1. 从棋盘的第一行开始,从第一个位置开始,依次判断当前位置是否能够放置皇后,判断的依据为:同该行之前的所有行中皇后的所在位置进行比较,如果在同一列,或者在同一条斜线上(斜线有两条,为正方形的两个对角线),都不符合要求,继续检验后序的位置。
    2. 如果该行所有位置都不符合要求,则回溯到前一行,改变皇后的位置,继续试探。
    3. 如果试探到最后一行,所有皇后摆放完毕,则直接打印出 8*8 的棋盘。最后一定要记得将棋盘恢复原样,避免影响下一次摆放。

    实现代码:
    #include <stdio.h>
    int Queenes[8] = {0}, Counts = 0; int Check(int line, int list)
    {   
    //遍历该行之前的所有行   for (int index=0; index<line; index++)
      {     
    //挨个取出前面行中皇后所在位置的列坐标     int data=Queenes[index];     //如果在同一列,该位置不能放     if (list == data)
        {       
    return 0;     }     //如果当前位置的斜上方有皇后,在一条斜线上,也不行     if ((index+data) == (line+list))
        {       
    return 0;     }     //如果当前位置的斜下方有皇后,在一条斜线上,也不行     if ((index-data) == (line-list))
        {       
    return 0;     }   }   //如果以上情况都不是,当前位置就可以放皇后

      return 1; }
    //输出语句 void print() {   for (int line = 0; line < 8; line++)   {     int list;     for (list = 0; list < Queenes[line]; list++)       printf("0");     printf("#");     for (list = Queenes[line] + 1; list < 8; list++)
        {       printf(
    "0");     }     printf(" ");   }   printf("================ "); }
    void eight_queen(int line)
    {   
    //在数组中为0-7列   for (int list=0; list<8; list++)
      {     
    //对于固定的行列,检查是否和之前的皇后位置冲突     if (Check(line, list))
        {       
    //不冲突,以行为下标的数组位置记录列数       Queenes[line] = list;       //如果最后一样也不冲突,证明为一个正确的摆法       if (line == 7)
          {         
    //统计摆法的Counts加1         Counts++;         //输出这个摆法         print();         //每次成功,都要将数组重归为0         Queenes[line] = 0;         return;       }       //继续判断下一样皇后的摆法,递归       eight_queen(line+1);       //不管成功失败,该位置都要重新归0,以便重复使用。       Queenes[line] = 0;     }   } }
    int main()
    {   
    //调用回溯函数,参数0表示从棋盘的第一行开始判断   eight_queen(0);   printf("摆放的方式有%d种", Counts);
      
    return 0; }
    大家可以自己运行一下程序,查看运行结果,由于八皇后问题有92种摆法,这里不一一列举。
  • 相关阅读:
    Chapter5树状数组与线段树(补充差分)(待补全两题)
    Chapter4枚举,模拟与排序
    CopyOnWriteArrayList实现原理及源码分析
    BAT大厂面试官必问的HashMap相关面试题及部分源码分析
    ArrayList、Vector、LinkedList、CopyOnWriteArrayList等详解
    java_集合知识点小结
    Fork-Join 原理深入分析(二)
    Fork-Join分治编程介绍(一)
    ForkJoin全解2:forkjoin实际工作流程与实现
    ForkJoin全解1:简单使用与大致实现原理
  • 原文地址:https://www.cnblogs.com/ciyeer/p/9046108.html
Copyright © 2020-2023  润新知