1、暴力解法 时间O(n^3) 空间O(1)
string longestPalindrome(string s) { int len = s.length(); if (len < 2) { return s; } int maxn = 1; int idx = 0; for (int i = 1; i < len - 1; i++) { for (int j = i + 1; j < len; j++) { string tmp = s.substr(i, j - i + 1); string tmp2 = tmp; reverse(tmp.begin(), tmp.end()); if (tmp == tmp2 && j - i + 1 > maxn) { maxn = j - i + 1; idx = i; } } } return s.substr(idx, maxn); }
2、动态规划 时间O(n^2) 空间O(n^2)
边界条件
- 当子串长度为1时,dp[i][i] = true
- 当子串长度为2时,dp[i][j] = s[i]==s[j]
动态转移方程
- dp[i][j] = dp[i+1][j-1] && s[i] == s[j]
string longestPalindrome(string s) { int len = s.length(); if (len < 2) { return s; } int maxn = 1; int idx = 0; vector<vector<int> > dp(len, vector<int>(len)); for (int i = 0; i < len; i++) { dp[i][i] = 1; } for (int j = 1; j < len; j++) { for (int i = 0; i < j; i++) { if (s[i] != s[j]) { dp[i][j] = 0; } else { if (j - i + 1 < 4) dp[i][j] = 1; else dp[i][j] = dp[i + 1][j - 1]; } if (dp[i][j] && j - i + 1 > maxn) { maxn = j - i + 1; idx = i; } } } return s.substr(idx, maxn); }
3、中心扩展 时间O(n^2) 空间O(1)
以下标 i 表示的字符为中心点向两端扩展,判断扩展后的字符是否为回文串
- 回文子串长度为奇数,中心为 s[i]
- 回文子串长度为偶数,中心为 s[i, i+1]
string longestPalindrome(string s) { int len = s.length(); if (len < 2) { return s; } int maxn = 1; int idx = 0; for (int i = 0; i < len - 1; i++) { int oddLen = computeLen(s, i, i); int evenLen = computeLen(s, i, i + 1); int tempLen = max(oddLen, evenLen); if (tempLen > maxn) { maxn = tempLen; idx = i - (tempLen - 1) / 2; } } return s.substr(idx, maxn); } int computeLen(string s, int l, int r) { int len = s.length(); int i = l, j = r; while (i >= 0 && j < len) { if (s[i] == s[j]) { i--; j++; } else { break; } } return j - i - 1; }