• 负载均衡策略


    负载均衡策略的优劣及其实现的难易程度有两个关键因素:

    (1) 负载均衡算法

    (2) 对网络系统状况的检测方式和能力

    1、 轮循均衡(Round Robin):每一次来自网络的请求轮流分配给内部中的服务器,从1至N然后重新开始。此种均衡算法适合于服务器组中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况。

    2、权重轮循均衡(Weighted Round Robin):根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。例如:服务器A的权值被设计成1,B的权值是3,C的权值是6,则服务器A、B、C将分别接受到10%、30%、60%的服务请求。此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。

    3、随机均衡(Random):把来自网络的请求随机分配给内部中的多个服务器。

    4、权重随机均衡(Weighted Random):此种均衡算法类似于权重轮循算法,不过在处理请求分担时是个随机选择的过程。

    5、响应速度均衡(Response Time):负载均衡设备对内部各服务器发出一个探测请求(例如Ping),然后根据内部中各服务器对探测请求的最快响应时间来决定哪一台服务器来响应客户端的服务请求。此种均衡算法能较好的反映服务器的当前运行状态,但这最快响应时间仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。

    6、最少连接数均衡(Least Connection):客户端的每一次请求服务在服务器停留的时间可能会有较大的差异,随着工作时间加长,如果采用简单的轮循或随机均衡算法,每一台服务器上的连接进程可能会产生极大的不同,并没有达到真正的负载均衡。最少连接数均衡算法对内部中需负载的每一台服务器都有一个数据记录,记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,将把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载更加均衡。此种均衡算法适合长时处理的请求服务,如FTP。

    7、处理能力均衡:此种均衡算法将把服务请求分配给内部中处理负荷(根据服务器CPU型号、CPU数量、内存大小及当前连接数等换算而成)最轻的服务器,由于考虑到了内部服务器的处理能力及当前网络运行状况,所以此种均衡算法相对来说更加精确,尤其适合运用到第七层(应用层)负载均衡的情况下。

    8、DNS响应均衡(Flash DNS):在Internet上,无论是HTTP、FTP或是其它的服务请求,客户端一般都是通过域名解析来找到服务器确切的IP地址的。在此均衡算法下,分处在不同地理位置的负载均衡设备收到同一个客户端的域名解析请求,并在同一时间内把此域名解析成各自相对应服务器的IP地址(即与此负载均衡设备在同一位地理位置的服务器的IP地址)并返回给客户端,则客户端将以最先收到的域名解析IP地址来继续请求服务,而忽略其它的IP地址响应。在种均衡策略适合应用在全局负载均衡的情况下,对本地负载均衡是没有意义的。

      尽管有多种的负载均衡算法可以较好的把数据流量分配给服务器去负载,但如果负载均衡策略没有对网络系统状况的检测方式和能力,一旦在某台服务器或某段负载均衡设备与服务器网络间出现故障的情况下,负载均衡设备依然把一部分数据流量引向那台服务器,这势必造成大量的服务请求被丢失,达不到不间断可用性的要求。所以良好的负载均衡策略应有对网络故障、服务器系统故障、应用服务故障的检测方式和能力:

    服务故障的检测方式和能力:

    (1) Ping侦测:通过ping的方式检测服务器及网络系统状况,此种方式简单快速,但只能大致检测出网络及服务器上的操作系统是否正常,对服务器上的应用服务检测就无能为力了。

    (2) TCP Open侦测:每个服务都会开放某个通过TCP连接,检测服务器上某个TCP端口(如Telnet的23口,HTTP的80口等)是否开放来判断服务是否正常。

    (3) HTTP URL侦测:比如向HTTP服务器发出一个对main.html文件的访问请求,如果收到错误信息,则认为服务器出现故障。

  • 相关阅读:
    JavaScript链式调用
    Javascript设计模式(2)-单体模式
    Javascript设计模式(1)
    stm32结合产品学习01—产品的框架
    【目标检测-模型对比1】R-CNN、SPPnet、Fast R-CNN、Faster R-CNN的对比
    【目标检测-框架测试】mmdetection的安装与使用
    【机器学习-笔记1】吴恩达网课笔记1——机器学习策略
    【算法】P1004 方格取数
    【算法】UVa 11624, Fire! 解题心得
    vector
  • 原文地址:https://www.cnblogs.com/chy2055/p/5177799.html
Copyright © 2020-2023  润新知