• HDU 3669 [Cross the Wall] DP斜率优化


    问题分析

    首先,如果一个人的(w)(h)均小于另一个人,那么这个人显然可以被省略。如果我们将剩下的人按(w[i])递增排序,那么(h[i])就是递减。

    之后我们考虑DP。

    我们设(f[i][j])为到第(i)个人,打了(j)个洞的花费。于是我们可以得到如下DP过程:

    for( LL i = 1; i <= N; ++i ) F[ i ][ 1 ] = w[ i ] * h[ 1 ];
    for( LL j = 2; j <= K; ++j ) 
        for( LL i = j; i <= N; ++i ) {
            f[ i ][ j ] = INF;
            for( LL k = j - 1; k < i; ++k ) 
                F[ i ][ j ] = min( F[ i ][ j ], F[ k ][ j - 1 ] + w[ i ] * h[ k + 1 ] );
        }
    Ans = F[ N ][ K ];
    

    我们将第二维滚动掉,节省空间:

    for( LL i = 1; i <= N; ++i ) F1[ i ] = w[ i ] * h[ 1 ];
    for( LL j = 2; j <= K; ++j ) {
        for( LL i = j; i <= N; ++i ) {
            F2[ i ] = INF;
            for( LL k = j - 1; k < i; ++k )
                F2[ i ] = min( F2[ i ], F1[ k ] + w[ i ] * h[ k + 1 ] );
        }
        memcpy( F1, F2, sizeof( F2 ) );
    }
    Ans = F1[ N ][ K ];
    

    再考虑优化最里面一层循环:

    (l>k)且从(l)转移优于从(k)转移,那么就有

    [F1[l]+w[i]*h[l+1]<F1[k]+w[i]*h[k+1] ]

    化简,得

    [frac{F_1[l]-F_1[k]}{h[k+1]-h[l+1]}<w[i] ]

    然后就可以斜率优化了。具体的斜率优化讲解可以看这里

    参考程序

    #include <bits/stdc++.h>
    #define LL long long
    using namespace std;
    
    const LL INF = 1e18 + 10;
    const LL MaxN = 50010, MaxK = 110;
    LL N, K;
    struct CitizenAttribute {
        LL Width, Hight;
        CitizenAttribute( LL Width_ = 0, LL Hight_ = 0 ) {
            Width = Width_; Hight = Hight_; return;
        }
        bool operator < ( const CitizenAttribute Other ) const {
            return Width < Other.Width || Width == Other.Width && Hight > Other.Hight;
        }
    };
    CitizenAttribute Citizens[ MaxN ];
    bool IsSkiped[ MaxN ];
    LL L, R, Queue[ MaxN ], F1[ MaxN ], F2[ MaxN ];
    LL NumAfterSkip;
    
    inline void Clear() {
        memset( Citizens, 0, sizeof( Citizens ) );
        memset( IsSkiped, false, sizeof( IsSkiped ) );
        memset( F1, 0, sizeof( F1 ) );
        return;
    }
    
    inline void SkipContainedCitizen() {
        CitizenAttribute Last = CitizenAttribute( 0, 0 );
        for( LL i = N; i >= 1; --i )
            if( Citizens[ i ].Hight <= Last.Hight ) IsSkiped[ i ] = true;
        	else Last = Citizens[ i ];
        NumAfterSkip = 0;
        for( LL i = 1; i <= N; ++i ) 
        	if( !IsSkiped[ i ] ) 
        		Citizens[ ++NumAfterSkip ] = Citizens[ i ];
        return;
    }
    
    inline bool Less( LL i, LL j, LL Limit ) {
        LL DeltaY = F1[ j ] - F1[ i ];
        LL DeltaX = Citizens[ i + 1 ].Hight - Citizens[ j + 1 ].Hight;
        return DeltaY <= Limit * DeltaX;
    }
    
    inline bool Greater( LL i, LL j, LL k ) {
        LL DeltaY1 = F1[ j ] - F1[ i ];
        LL DeltaY2 = F1[ k ] - F1[ j ];
        LL DeltaX1 = Citizens[ i + 1 ].Hight - Citizens[ j + 1 ].Hight;
        LL DeltaX2 = Citizens[ j + 1 ].Hight - Citizens[ k + 1 ].Hight;
        return DeltaY1 * DeltaX2 >= DeltaY2 * DeltaX1;
    }
    
    void Work() {
    	LL Ans = INF;
        Clear();
        for( LL i = 1; i <= N; ++i ) 
            scanf( "%lld%lld", &Citizens[ i ].Width, &Citizens[ i ].Hight );
        sort( Citizens + 1, Citizens + N + 1 );
        SkipContainedCitizen();
        for( LL i = 1; i <= NumAfterSkip; ++i ) F1[ i ] = Citizens[ i ].Width * Citizens[ 1 ].Hight;
        Ans = min( Ans, F1[ NumAfterSkip ] );
        for( LL j = 2; j <= K && j <= NumAfterSkip; ++j ) {
        	memset( F2, 0, sizeof( F2 ) );
        	L = R = 0; memset( Queue, 0, sizeof( Queue ) );
        	Queue[ R++ ] = j - 1;
    	    for( LL i = j; i <= NumAfterSkip; ++i ) {
    	        while( L + 1 < R && Less( Queue[ L ], Queue[ L + 1 ], Citizens[ i ].Width ) )
    	            ++L;
    	        F2[ i ] = F1[ Queue[ L ] ] + Citizens[ Queue[ L ] + 1 ].Hight * Citizens[ i ].Width;
    	        while( L + 1 < R && Greater( Queue[ R - 2 ], Queue[ R - 1 ], i ) ) 
    	            --R;
    	        Queue[ R++ ] = i;
    	    }
    	    memcpy( F1, F2, sizeof( F2 ) );
    	    Ans = min( Ans, F1[ NumAfterSkip ] );
    	}
    	printf( "%lld
    ", Ans );
    	return;
    }
    
    int main() {
        while( scanf( "%lld%lld", &N, &K ) == 2 ) 
            Work();
        return 0;
    }
    
  • 相关阅读:
    【Android
    【Android
    【Android
    【Android
    压测工具Siege
    压测工具Webbench
    Varnish与Squid的对比
    大牛的法宝[转]
    告别平庸的10种简单方法
    一个优秀的研发团队应该具备什么特征[转]
  • 原文地址:https://www.cnblogs.com/chy-2003/p/9758557.html
Copyright © 2020-2023  润新知