题意
有一个含有(2n(n leqslant2000))个实数的数列,取出(n)个向上取整,另(n)个向下取整。问取整后数列的和与原数列的和的差的绝对值。
就是说,令(a)为原数列,(b)为取整后数列,求
[min(abs(sum_{i=1}^{2n}a-sum_{i=1}^{2n}b))
]
解题思路
刚开始大力猜了一波贪心结论,然后怒WA n发……
我也不知道怎么会想到以下这个奇怪的结论的……
如果我们设(n)个被向上取整的数的小数部分的和为(a)(其中本来为整数的有(x)个),设(n)个被向下取整的数的小数部分的和为(b)。那么答案就是(ans=abs(b-(n-a-x))=abs(b+a-n+x))。同时我们注意到,原数列中所有数的和为(sum=a+b),所以呢,就有(ans=abs(sum-n+x))。
这,个,东,西,和,(a),(b),没,有,关,系!!!
然后容易发现(max(0,n-x)leqslant x leqslant min(n,x))。所以就容易得出答案了!
参考程序
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int Maxn = 2010;
double a[ Maxn << 1 ];
int n, t;//t就是上面说的x
double sum, ans;
int main() {
scanf( "%d", &n );
for( int i = 1; i <= n * 2; ++i ) scanf( "%lf", &a[ i ] );
for( int i = 1; i <= n * 2; ++i )
if( a[ i ] - floor( a[ i ] ) <= 1e-18 ) t++;
for( int i = 1; i <= n * 2; ++i ) sum += a[ i ] - floor( a[ i ] );
ans = 1e9;
for( int i = max( 0, t - n ); i <= min( n, t ); ++i )
ans = min( ans, abs( sum - n + i ) );
printf( "%.3lf
", ans );
return 0;
}