• CodeForces 352C Jeff and Rounding


    题意

    有一个含有(2n(n leqslant2000))个实数的数列,取出(n)个向上取整,另(n)个向下取整。问取整后数列的和与原数列的和的差的绝对值。
    就是说,令(a)为原数列,(b)为取整后数列,求

    [min(abs(sum_{i=1}^{2n}a-sum_{i=1}^{2n}b)) ]

    解题思路

    刚开始大力猜了一波贪心结论,然后怒WA n发……
    我也不知道怎么会想到以下这个奇怪的结论的……
    如果我们设(n)个被向上取整的数的小数部分的和为(a)(其中本来为整数的有(x)个),设(n)个被向下取整的数的小数部分的和为(b)。那么答案就是(ans=abs(b-(n-a-x))=abs(b+a-n+x))。同时我们注意到,原数列中所有数的和为(sum=a+b),所以呢,就有(ans=abs(sum-n+x))
    这,个,东,西,和,(a)(b),没,有,关,系!!!
    然后容易发现(max(0,n-x)leqslant x leqslant min(n,x))。所以就容易得出答案了!

    参考程序

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    const int Maxn = 2010;
    double a[ Maxn << 1 ];
    int n, t;//t就是上面说的x
    double sum, ans;
    
    int main() {
    	scanf( "%d", &n );
    	for( int i = 1; i <= n * 2; ++i ) scanf( "%lf", &a[ i ] );
    	for( int i = 1; i <= n * 2; ++i ) 
    		if( a[ i ] - floor( a[ i ] ) <= 1e-18 ) t++;
    	for( int i = 1; i <= n * 2; ++i ) sum += a[ i ] - floor( a[ i ] );
    	ans = 1e9;
    	for( int i = max( 0, t - n ); i <= min( n, t ); ++i ) 
    		ans = min( ans, abs( sum - n + i ) );
    	printf( "%.3lf
    ", ans );
    	return 0;
    }
    
  • 相关阅读:
    Input 银行卡验证
    记一次坑爹的加解密问题
    C# Html Agility Pack
    记一次坑爹的 “跨域” 问题
    FindControl的使用方法
    C#如何使用异步编程
    ReportViewer中设置ServerReport.ReportServerCredentials属性的方法
    C#中常用接口介绍
    谈谈C#中的接口
    DataTable与Linq相互转换
  • 原文地址:https://www.cnblogs.com/chy-2003/p/9643144.html
Copyright © 2020-2023  润新知