• Is there a short-hand for nth root of x in Python 开n次方


    Is there a short-hand for nth root of x in Python

    开三次方一般指三次方根。如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

    nth root of x is x^(1/n), so you can do 9**(1/2.0) to find the 2nd root of 9, for example. In general, you can compute the nth root of x as:

    x**(1/float(n))
    

    You can also do 1.0/n instead of 1/float(n). It is required so that the result is a float rather than an int.

    How to find integer nth roots?

    def nth_root(val, n):
    ret = val**(1.0/n)
    return ret;

    Difference between the built-in pow() and math.pow() for floats, in Python?

    回答1

    Quick Check

    From the signatures, we can tell that they are different:

    pow(x, y[, z])

    math.pow(x, y)

    Also, trying it in the shell will give you a quick idea:

    >>> pow is math.pow
    False
    

    Testing the differences

    Another way to understand the differences in behaviour between the two functions is to test for them:

    import math
    import traceback
    import sys
    
    inf = float("inf")
    NaN = float("nan")
    
    vals = [inf, NaN, 0.0, 1.0, 2.2, -1.0, -0.0, -2.2, -inf, 1, 0, 2]
    
    tests = set([])
    
    for vala in vals:
      for valb in vals:
        tests.add( (vala, valb) )
        tests.add( (valb, vala) )
    
    
    for a,b in tests:
      print("math.pow(%f,%f)"%(a,b) )
      try:
        print("    %f "%math.pow(a,b))
      except:
        traceback.print_exc()
    
      print("__builtins__.pow(%f,%f)"%(a,b) )
      try:
        print("    %f "%__builtins__.pow(a,b))
      except:
        traceback.print_exc()
    

    We can then notice some subtle differences. For example:

    math.pow(0.000000,-2.200000)
        ValueError: math domain error
    
    __builtins__.pow(0.000000,-2.200000)
        ZeroDivisionError: 0.0 cannot be raised to a negative power
    

    There are other differences, and the test list above is not complete (no long numbers, no complex, etc...), but this will give us a pragmatic list of how the two functions behave differently. I would also recommend extending the above test to check for the type that each function returns. You could probably write something similar that creates a report of the differences between the two functions.

    math.pow()

    math.pow() handles its arguments very differently from the builtin ** or pow(). This comes at the cost of flexibility. Having a look at the source, we can see that the arguments to math.pow() are cast directly to doubles:

    static PyObject *
    math_pow(PyObject *self, PyObject *args)
    {
        PyObject *ox, *oy;
        double r, x, y;
        int odd_y;
    
        if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
            return NULL;
        x = PyFloat_AsDouble(ox);
        y = PyFloat_AsDouble(oy);
    /*...*/
    

    The checks are then carried out against the doubles for validity, and then the result is passed to the underlying C math library.

    builtin pow()

    The built-in pow() (same as the ** operator) on the other hand behaves very differently, it actually uses the Objects's own implementation of the ** operator, which can be overridden by the end user if need be by replacing a number's __pow__()__rpow__() or __ipow__(), method.

    For built-in types, it is instructive to study the difference between the power function implemented for two numeric types, for example, floatslong and complex.

    Overridding the default behaviour

    Emulating numeric types is described here. essentially, if you are creating a new type for numbers with uncertainty, what you will have to do is provide the __pow__()__rpow__() and possibly __ipow__() methods for your type. This will allow your numbers to be used with the operator:

    class Uncertain:
      def __init__(self, x, delta=0):
        self.delta = delta
        self.x = x
      def __pow__(self, other):
        return Uncertain(
          self.x**other.x, 
          Uncertain._propagate_power(self, other)
        )
      @staticmethod
      def _propagate_power(A, B):
        return math.sqrt(
          ((B.x*(A.x**(B.x-1)))**2)*A.delta*A.delta +
          (((A.x**B.x)*math.log(B.x))**2)*B.delta*B.delta
        )
    

    In order to override math.pow() you will have to monkey patch it to support your new type:

    def new_pow(a,b):
        _a = Uncertain(a)
        _b = Uncertain(b)
        return _a ** _b
    
    math.pow = new_pow
    

    Note that for this to work you'll have to wrangle the Uncertain class to cope with an Uncertain instance as an input to __init__()

    回答2

    math.pow() implicitly converts its arguments to float:

    >>> from decimal import Decimal
    >>> from fractions import Fraction
    >>> math.pow(Fraction(1, 3), 2)
    0.1111111111111111
    >>> math.pow(Decimal(10), -1)
    0.1
    

    but the built-in pow does not:

    >>> pow(Fraction(1, 3), 2)
    Fraction(1, 9)
    >>> pow(Decimal(10), -1)
    Decimal('0.1')
    

    My goal is to provide an implementation of both the built-in pow() and of math.pow() for numbers with uncertainty

    You can overload pow and ** by defining __pow__ and __rpow__ methods for your class.

    However, you can't overload math.pow (without hacks like math.pow = pow). You can make a class usable with math.pow by defining a __float__ conversion, but then you'll lose the uncertainty attached to your numbers.

  • 相关阅读:
    bzoj 3993: [SDOI2015]星际战争
    bzoj 4066: 简单题
    bzoj 3611: [Heoi2014]大工程
    bzoj 3530: [Sdoi2014]数数
    bzoj 3529: [Sdoi2014]数表
    bzoj 3504: [Cqoi2014]危桥
    bzoj 3489: A simple rmq problem
    bzoj 3211: 花神游历各国
    bzoj 3196: Tyvj 1730 二逼平衡树
    bzoj 3172: [Tjoi2013]单词
  • 原文地址:https://www.cnblogs.com/chucklu/p/14159214.html
Copyright © 2020-2023  润新知