• 今日SGU 5.29


    sgu 299

    题意:给你n个线段,然后问你能不能选出其中三个组成一个三角形,数字很大

    收获:另一个大整数模板

    那么考虑下为什么如果连续三个不可以的话,一定是不存在呢?

    连续上个不合法的话,一定是 ai-1 + ai-2 < = ai;

    那么如果我们取右边的数,那是不是aj ,那么aj >= ai就更不可能成立了,

    取左边的一样可以证明出不可以

    #include<bits/stdc++.h>
    #define de(x) cout<<#x<<"="<<x<<endl;
    #define dd(x) cout<<#x<<"="<<x<<" ";
    #define rep(i,a,b) for(int i=a;i<(b);++i)
    #define repd(i,a,b) for(int i=a;i>=(b);--i)
    #define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
    #define ll long long
    #define mt(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define pii pair<int,int>
    #define pdd pair<double,double>
    #define pdi pair<double,int>
    #define mp(u,v) make_pair(u,v)
    #define sz(a) (int)a.size()
    #define ull unsigned long long
    #define ll long long
    #define pb push_back
    #define PI acos(-1.0)
    #define qc std::ios::sync_with_stdio(false)
    #define db double
    #define all(a) a.begin(),a.end()
    const int mod = 1e9+7;
    const int maxn = 1e3+6;
    const double eps = 1e-6;
    using namespace std;
    class bign  
    {  
    public:  
        int len, s[maxn];//数的长度,记录数组  
    //构造函数  
        bign();  
        bign(const char*);  
        bign(int);  
        bool sign;//符号 1正数 0负数  
        string toStr() const;//转化为字符串,主要是便于输出  
        friend istream& operator>>(istream &,bign &);//重载输入流  
        friend ostream& operator<<(ostream &,bign &);//重载输出流  
    //重载复制  
        bign operator=(const char*);  
        bign operator=(int);  
        bign operator=(const string);  
    //重载各种比较  
        bool operator>(const bign &) const;  
        bool operator>=(const bign &) const;  
        bool operator<(const bign &) const;  
        bool operator<=(const bign &) const;  
        bool operator==(const bign &) const;  
        bool operator!=(const bign &) const;  
    //重载四则运算  
        bign operator+(const bign &) const;  
        bign operator++();  
        bign operator++(int);  
        bign operator+=(const bign&);  
        bign operator-(const bign &) const;  
        bign operator--();  
        bign operator--(int);  
        bign operator-=(const bign&);  
        bign operator*(const bign &)const;  
        bign operator*(const int num)const;  
        bign operator*=(const bign&);  
        bign operator/(const bign&)const;  
        bign operator/=(const bign&);  
    //四则运算的衍生运算  
        bign operator%(const bign&)const;//取模(余数)  
        bign factorial()const;//阶乘  
        bign Sqrt()const;//整数开根(向下取整)  
        bign pow(const bign&)const;//次方  
    //一些乱乱的函数  
        void clean();  
        ~bign();  
    };  
    #define max(a,b) a>b ? a : b  
    #define min(a,b) a<b ? a : b  
      
    bign::bign()  
    {  
        memset(s, 0, sizeof(s));  
        len = 1;  
        sign = 1;  
    }  
      
    bign::bign(const char *num)  
    {  
        *this = num;  
    }  
      
    bign::bign(int num)  
    {  
        *this = num;  
    }  
      
    string bign::toStr() const  
    {  
        string res;  
        res = "";  
        for (int i = 0; i < len; i++)  
            res = (char)(s[i] + '0') + res;  
        if (res == "")  
            res = "0";  
        if (!sign&&res != "0")  
            res = "-" + res;  
        return res;  
    }  
      
    istream &operator>>(istream &in, bign &num)  
    {  
        string str;  
        in>>str;  
        num=str;  
        return in;  
    }  
      
    ostream &operator<<(ostream &out, bign &num)  
    {  
        out<<num.toStr();  
        return out;  
    }  
      
    bign bign::operator=(const char *num)  
    {  
        memset(s, 0, sizeof(s));  
        char a[maxn] = "";  
        if (num[0] != '-')  
            strcpy(a, num);  
        else  
            for (int i = 1; i < strlen(num); i++)  
                a[i - 1] = num[i];  
        sign = !(num[0] == '-');  
        len = strlen(a);  
        for (int i = 0; i < strlen(a); i++)  
            s[i] = a[len - i - 1] - 48;  
        return *this;  
    }  
      
    bign bign::operator=(int num)  
    {  
        if (num < 0)  
            sign = 0, num = -num;  
        else  
            sign = 1;  
        char temp[maxn];  
        sprintf(temp, "%d", num);  
        *this = temp;  
        return *this;  
    }  
      
    bign bign::operator=(const string num)  
    {  
        const char *tmp;  
        tmp = num.c_str();  
        *this = tmp;  
        return *this;  
    }  
      
    bool bign::operator<(const bign &num) const  
    {  
        if (sign^num.sign)  
            return num.sign;  
        if (len != num.len)  
            return len < num.len;  
        for (int i = len - 1; i >= 0; i--)  
            if (s[i] != num.s[i])  
                return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));  
        return !sign;  
    }  
      
    bool bign::operator>(const bign&num)const  
    {  
        return num < *this;  
    }  
      
    bool bign::operator<=(const bign&num)const  
    {  
        return !(*this>num);  
    }  
      
    bool bign::operator>=(const bign&num)const  
    {  
        return !(*this<num);  
    }  
      
    bool bign::operator!=(const bign&num)const  
    {  
        return *this > num || *this < num;  
    }  
      
    bool bign::operator==(const bign&num)const  
    {  
        return !(num != *this);  
    }  
      
    bign bign::operator+(const bign &num) const  
    {  
        if (sign^num.sign)  
        {  
            bign tmp = sign ? num : *this;  
            tmp.sign = 1;  
            return sign ? *this - tmp : num - tmp;  
        }  
        bign result;  
        result.len = 0;  
        int temp = 0;  
        for (int i = 0; temp || i < (max(len, num.len)); i++)  
        {  
            int t = s[i] + num.s[i] + temp;  
            result.s[result.len++] = t % 10;  
            temp = t / 10;  
        }  
        result.sign = sign;  
        return result;  
    }  
      
    bign bign::operator++()  
    {  
        *this = *this + 1;  
        return *this;  
    }  
      
    bign bign::operator++(int)  
    {  
        bign old = *this;  
        ++(*this);  
        return old;  
    }  
      
    bign bign::operator+=(const bign &num)  
    {  
        *this = *this + num;  
        return *this;  
    }  
      
    bign bign::operator-(const bign &num) const  
    {  
        bign b=num,a=*this;  
        if (!num.sign && !sign)  
        {  
            b.sign=1;  
            a.sign=1;  
            return b-a;  
        }  
        if (!b.sign)  
        {  
            b.sign=1;  
            return a+b;  
        }  
        if (!a.sign)  
        {  
            a.sign=1;  
            b=bign(0)-(a+b);  
            return b;  
        }  
        if (a<b)  
        {  
            bign c=(b-a);  
            c.sign=false;  
            return c;  
        }  
        bign result;  
        result.len = 0;  
        for (int i = 0, g = 0; i < a.len; i++)  
        {  
            int x = a.s[i] - g;  
            if (i < b.len) x -= b.s[i];  
            if (x >= 0) g = 0;  
            else  
            {  
                g = 1;  
                x += 10;  
            }  
            result.s[result.len++] = x;  
        }  
        result.clean();  
        return result;  
    }  
      
    bign bign::operator * (const bign &num)const  
    {  
        bign result;  
        result.len = len + num.len;  
      
        for (int i = 0; i < len; i++)  
            for (int j = 0; j < num.len; j++)  
                result.s[i + j] += s[i] * num.s[j];  
      
        for (int i = 0; i < result.len; i++)  
        {  
            result.s[i + 1] += result.s[i] / 10;  
            result.s[i] %= 10;  
        }  
        result.clean();  
        result.sign = !(sign^num.sign);  
        return result;  
    } 
    bign bign::operator*(const int num)const  
    {  
        bign x = num;  
        bign z = *this;  
        return x*z;  
    }
    void bign::clean()  
    {  
        if (len == 0) len++;  
        while (len > 1 && s[len - 1] == '')  
            len--;  
    }
    bign::~bign()  
    {  
    }
    bign a[maxn];
    int main(){
        int n;
        scanf("%d",&n);
        rep(i,1,n+1) cin>>a[i];
        sort(a+1,a+n+1);
        rep(i,3,n+1) if(a[i] < a[i-1] + a[i-2]) {
            cout<<a[i]<<" "<<a[i-1]<<" "<<a[i-2]<<endl;
            return 0;
        }
        puts("0 0 0");
        return 0;
    }
    View Code

     sgu 230

    题意:告诉你硬币1 到 n,然后重量依次递增,然后给你n个盒子,然后让你用n个盒子装这n个硬币,然后重量大的

    要装重量大的硬币

    收获:好好看题意,拓扑

    #include<bits/stdc++.h>
    #define de(x) cout<<#x<<"="<<x<<endl;
    #define dd(x) cout<<#x<<"="<<x<<" ";
    #define rep(i,a,b) for(int i=a;i<(b);++i)
    #define repd(i,a,b) for(int i=a;i>=(b);--i)
    #define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
    #define ll long long
    #define mt(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define pii pair<int,int>
    #define pdd pair<double,double>
    #define pdi pair<double,int>
    #define mp(u,v) make_pair(u,v)
    #define sz(a) (int)a.size()
    #define ull unsigned long long
    #define ll long long
    #define pb push_back
    #define PI acos(-1.0)
    #define qc std::ios::sync_with_stdio(false)
    #define db double
    #define all(a) a.begin(),a.end()
    const int mod = 1e9+7;
    const int maxn = 2e2+5;
    const double eps = 1e-6;
    using namespace std;
    bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
    bool ls(const db &a, const db &b) { return a + eps < b; }
    bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
    ll gcd(ll a,ll b) { return a==0?b:gcd(b%a,a); };
    ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
    ll kpow(ll a,ll b) {ll res=1; if(b<0) return 1; for(;b;b>>=1){if(b&1)res=res*a;a=a*a;}return res;}
    ll read(){
        ll x=0,f=1;char ch=getchar();
        while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m;
    int in[maxn];
    vector<int> G[maxn],ans;
    bool topo(){
        queue<int> q; while(sz(q)) q.pop();
        rep(i,1,n+1) if(!in[i]) q.push(i);
        while(sz(q)){
            int u = q.front(); q.pop();
            ans.pb(u);
            rep(i,0,sz(G[u])){
                int v = G[u][i];
                in[v]--;
                if(!in[v]) q.push(v);
            }
        }
        return sz(ans) == n;
    } 
    int a[maxn];
    int main(){
        scanf("%d%d",&n,&m);
        rep(i,0,m) {
            int u,v;
            scanf("%d%d",&u,&v);
            G[u].pb(v);
            in[v]++;
        }
        if(!topo()) return puts("No solution"),0;
        rep(i,0,sz(ans)) a[ans[i]]=i+1;//printf("%d%c",ans[i]," 
    "[i+1==sz(ans)]);
        rep(i,1,n+1) printf("%d%c",a[i]," 
    "[i==n]);
        return 0;
    }
    View Code

     sgu 249

    题意:给你0到2^(n+m)-1这些数字,要你放到2^n行,2^m列的矩形里,要求相邻两个数字的二进制只差一位

    收获:格雷码

    #include<bits/stdc++.h>
    #define de(x) cout<<#x<<"="<<x<<endl;
    #define dd(x) cout<<#x<<"="<<x<<" ";
    #define rep(i,a,b) for(int i=a;i<(b);++i)
    #define repd(i,a,b) for(int i=a;i>=(b);--i)
    #define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
    #define ll long long
    #define mt(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define pii pair<int,int>
    #define pdd pair<double,double>
    #define pdi pair<double,int>
    #define mp(u,v) make_pair(u,v)
    #define sz(a) (int)a.size()
    #define ull unsigned long long
    #define ll long long
    #define pb push_back
    #define PI acos(-1.0)
    #define qc std::ios::sync_with_stdio(false)
    #define db double
    #define all(a) a.begin(),a.end()
    const int mod = 1e9+7;
    const int maxn = 1e5+5;
    const double eps = 1e-6;
    using namespace std;
    bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
    bool ls(const db &a, const db &b) { return a + eps < b; }
    bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
    ll gcd(ll a,ll b) { return a==0?b:gcd(b%a,a); };
    ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
    ll kpow(ll a,ll b) {ll res=1;a%=mod; if(b<0) return 1; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    ll read(){
        ll x=0,f=1;char ch=getchar();
        while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    //inv[1]=1;
    //for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
    //格雷码的相邻数,二进制只差一位
    int main(){
        int n,m;
        scanf("%d%d",&n,&m);
        rep(i,0,1<<n) rep(j,0,1<<m) printf("%d%c",(((i^(i>>1))<<m)) | (j^(j>>1))," 
    "[j+1==(1<<m)]);
        return 0;
    }
    View Code
  • 相关阅读:
    Promise笔记
    srping-cloud-stream集成rocketmq
    mysql锁
    profiling分析
    mysql慢查询
    sql语句中in与exists的使用区别
    数据库死锁的解决办法
    死锁的形成以及处理
    百万数据修改索引,百万数据修改主键
    创建视图索引
  • 原文地址:https://www.cnblogs.com/chinacwj/p/9107414.html
Copyright © 2020-2023  润新知