• 今日SGU 5.27


    SGU 122

    题意:给你n个人,每个人有大于 N / 2(向上取整)的朋友,问你1这个人有一个书,每个人都想看,只能从朋友之间传递,然后最后回到了1这个人,问你

    是否有解,然后有解输出路径

    收获:哈密尔顿路

    一:Dirac定理(充分条件)

      设一个无向图中有N个顶点,若所有顶点的度数大于等于N/2,则哈密顿回路一定存在.(N/2指的是⌈N/2⌉,向上取整)

    二:基本的必要条件

      设图G=<V, E>是哈密顿图,则对于v的任意一个非空子集S,若以|S|表示S中元素的数目,G-S表示G中删除了S中的点以及这些点所关联的边后得到的子图,则W(G-S)<=|S|成立.其中W(G-S)是G-S中联通分支数.

    三:竞赛图(哈密顿通路)

      N(N>=2)阶竞赛图一点存在哈密顿通路.

    还偷了一个哈密尔顿回路模板:https://blog.csdn.net/u010929036/article/details/46345059

    而且这道题会卡输入的,我用getline超时了。。。

    #include<bits/stdc++.h>
    #define de(x) cout<<#x<<"="<<x<<endl;
    #define dd(x) cout<<#x<<"="<<x<<" ";
    #define rep(i,a,b) for(int i=a;i<(b);++i)
    #define repd(i,a,b) for(int i=a;i>=(b);--i)
    #define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
    #define ll long long
    #define mt(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define pii pair<int,int>
    #define pdd pair<double,double>
    #define pdi pair<double,int>
    #define mp(u,v) make_pair(u,v)
    #define sz(a) (int)a.size()
    #define ull unsigned long long
    #define ll long long
    #define pb push_back
    #define PI acos(-1.0)
    #define qc std::ios::sync_with_stdio(false)
    #define db double
    #define all(a) a.begin(),a.end()
    const int mod = 1e9+7;
    const int maxn = 1e3+6;
    const double eps = 1e-6;
    using namespace std;
    bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
    bool ls(const db &a, const db &b) { return a + eps < b; }
    bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
    ll gcd(ll a,ll b) { return a==0?b:gcd(b%a,a); };
    ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
    ll kpow(ll a,ll b) {ll res=1; if(b<0) return 1; for(;b;b>>=1){if(b&1)res=res*a;a=a*a;}return res;}
    ll read(){
        ll x=0,f=1;char ch=getchar();
        while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    class Hamilton {
            int n, next[maxn];
            bool g[maxn][maxn], vis[maxn];
    
            int find(int u)
            {
                    for (int v = 0; v < n; ++v)
                            if (g[u][v] && !vis[v]) return v;
                    return -1;
            }
    
            void reverse(int v, int f)
            {
                    if (v == -1) return;
                    reverse(next[v], v); next[v] = f;
            }
    
            public:
            void init(int n)
            {
                    this->n = n;
                    memset(g, false, sizeof(g));
            }
    
            void add_edge(int u, int v) { g[u][v] = true; }
    
            void find_path(int s = 0)
            {
                    int t = s, sz = 1;
                    memset(next, -1, sizeof(next));
                    memset(vis, false, sizeof(vis)); vis[s] = true;
                    while (sz < n) {
                            if (sz == 1) {
                                    for (int v; ~(v = find(s)); s = v)
                                            ++sz, vis[v] = true, next[v] = s;
                                    for (int v; ~(v = find(t)); t = v)
                                            ++sz, vis[v] = true, next[t] = v;
                            } else {
                                    for (int u, v = 0; v < n; ++v) if (!vis[v]) {
                                            ++sz, vis[v] = true;
                                            for (u = s; !g[u][v]; u = next[u]);
                                            s = next[u]; t = next[u] = v; break;
                                    }
                            }
                            if (g[t][s]) next[t] = s;
                            for (int u = next[s], v; next[t] == -1; u = next[u])
                                    if (g[u][t] && g[v=next[u]][s])
                                            reverse(v, s), next[u] = t, t = v;
                    }
                    for (int i = 0, u = 0; i < n; ++i, u = next[u])
                            printf("%d ", u + 1);
                    printf("%d
    ", 1);
            }
    } grp;
    char s[100011],*p;
    //s可以对应char *,而不能对应char* & 
    bool get_int(int &v,char* &p){
        v = 0;
        while(*p && !isdigit(*p)) p++;
        if(!isdigit(*p)) return false;
        while(isdigit(*p)) v = v * 10 + *p++ - '0';
        return true;
    }
    int main(){
        int n,v;
        scanf("%d",&n);getchar();
        grp.init(n);
        rep(i,0,n){
            gets(s);p = s;
    //        de(s) 
            while(get_int(v,p)) grp.add_edge(i,--v);
        }
        grp.find_path();
        return 0;
    }
    View Code

     SGU  178

    题意:题意自己了解下,打字不好描述

    收获:打表模拟几组数据,暴力

    #include<bits/stdc++.h>
    #define de(x) cout<<#x<<"="<<x<<endl;
    #define dd(x) cout<<#x<<"="<<x<<" ";
    #define rep(i,a,b) for(int i=a;i<(b);++i)
    #define repd(i,a,b) for(int i=a;i>=(b);--i)
    #define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
    #define ll long long
    #define mt(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define pii pair<int,int>
    #define pdd pair<double,double>
    #define pdi pair<double,int>
    #define mp(u,v) make_pair(u,v)
    #define sz(a) (int)a.size()
    #define ull unsigned long long
    #define ll long long
    #define pb push_back
    #define PI acos(-1.0)
    #define qc std::ios::sync_with_stdio(false)
    #define db double
    #define all(a) a.begin(),a.end()
    const int mod = 1e9+7;
    const int maxn = 2e2+5;
    const double eps = 1e-6;
    using namespace std;
    bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
    bool ls(const db &a, const db &b) { return a + eps < b; }
    bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
    ll gcd(ll a,ll b) { return a==0?b:gcd(b%a,a); };
    ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
    ll kpow(ll a,ll b) {ll res=1; if(b<0) return 1; for(;b;b>>=1){if(b&1)res=res*a;a=a*a;}return res;}
    ll read(){
        ll x=0,f=1;char ch=getchar();
        while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    ll n;
    bool ok(int i){
        if(!i) return n==1;
        ll sum = i,now = i + 1, cnt = 2 * i + 1;
        if(sum >= n) return true;
        rep(j, 0, cnt - i){
            sum += now;
            now <<= 1;
            if(sum >= n) return true;
        }
        return sum >= n;
    }
    int main(){
        scanf("%lld",&n);
        rep(i,0,101) if(ok(i)) return printf("%d
    ",i),0;
        return 0;
    }
    View Code
  • 相关阅读:
    AD9 如何画4层pcb板
    在Altium Designer 2009下如何添加Logo图
    [置顶] 整数拆分 整合算法
    altium designer 中的top/bottom solder和top/bottom paste mask
    vs2012 与 win7 不兼容的问题
    poj1742 Coins
    poj3181 Dollar Dayz
    poj1065 Wooden Sticks
    poj1631 Bridging signals
    poj3666 Making the Grade
  • 原文地址:https://www.cnblogs.com/chinacwj/p/9095174.html
Copyright © 2020-2023  润新知