• 如何使用 opencv 加载 darknet yolo 预训练模型?


    如何使用 opencv 加载 darknet yolo 预训练模型?

    opencv 版本 > 3.4 以上

    constexpr const char *image_path = "darknet.jpg";//待检测图片
    constexpr const char *darknet_cfg = "darknet.cfg";//网络文件
    constexpr const char *darknet_weights = "darknet.weights";//训练模型
    const std::vector<std::string> class_labels = {"darknet","yolo"};//类标签
    
    void darknetDetection(const std::string &path,const std::string &darknet_cfg,const std::string &darknet_weights,std::vector<std::string> class_labels,float confidenceThreshold)
    {
        // 加载模型
        cv::dnn::Net net = cv::dnn::readNetFromDarknet(darknet_cfg,darknet_weights);
    
        // 加载标签集
        std::vector<std::string> classLabels = class_labels;
    
        // 读取待检测图片
        cv::Mat img = cv::imread(path);
        cv::Mat blob = cv::dnn::blobFromImage(img,1.0/255.0,{416,416},0.00392,true);
        net.setInput(blob,"data");
    
        // 检测
        cv::Mat detectionMat = net.forward("detection_out");// 6 845 1 W x H x C
    
        // 获取网络每层的用时并获取总用时
        std::vector<double> layersTimings;
        double freq = cv::getTickFrequency() / 1000;
        double time = net.getPerfProfile(layersTimings) / freq;
        std::ostringstream ss;
        ss << "detection time: " << time << " ms";
        // 绘制总用时至原始图片
        cv::putText(img, ss.str(), cv::Point(20, 20), 0, 0.5, cv::Scalar(0, 0, 255));
    
        // 遍历所有结果集
        for(int i = 0;i < detectionMat.rows;++i){
            const int probability_index = 5;
            const int probability_size = detectionMat.cols - probability_index;
            float *prob_array_ptr = &detectionMat.at<float>(i, probability_index);
            size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr;
            float confidence = detectionMat.at<float>(i, (int)objectClass + probability_index);
    
            // 比较置信度并绘制满足条件的置信度
            if (confidence > confidenceThreshold)
            {
                float x = detectionMat.at<float>(i, 0);
                float y = detectionMat.at<float>(i, 1);
                float width = detectionMat.at<float>(i, 2);
                float height = detectionMat.at<float>(i, 3);
    
                int xLeftBottom = static_cast<int>((x - width / 2) * img.cols);
                int yLeftBottom = static_cast<int>((y - height / 2) * img.rows);
                int xRightTop = static_cast<int>((x + width / 2) * img.cols);
                int yRightTop = static_cast<int>((y + height / 2) * img.rows);
    
                cv::Rect object(xLeftBottom, yLeftBottom,xRightTop - xLeftBottom,yRightTop - yLeftBottom);//x y w h
                cv::rectangle(img, object, cv::Scalar(0, 0, 255), 2, 8);
    
                // 判断类id是否符合标签范围并绘制该标签,也就是矩阵的下标索引
                if (objectClass < classLabels.size())
                {
                    cv::String label = cv::String(classLabels[objectClass]) + ": " + std::to_string(confidence);
                    int baseLine = 0;
                    cv::Size labelSize = cv::getTextSize(label,cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
                    cv::rectangle(img, cv::Rect(cv::Point(xLeftBottom, yLeftBottom),cv::Size(labelSize.width, labelSize.height + baseLine)),cv::Scalar(255, 255, 255), cv::FILLED);
                    cv::putText(img, label, cv::Point(xLeftBottom, yLeftBottom + labelSize.height),cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
                }
            }
        }
    
        // 显示图片
        cv::imshow("Darknet",img);
        cv::waitKey(0);
    }
    
  • 相关阅读:
    javascript之createElement事件
    rgb颜色列表
    欧美很好听的调调
    转:JMeter--使用代理录制Web性.能测试脚.本
    转:使用 JMeter 完成常用的压力测试
    转: 理解 JMeter 聚合报告(Aggregate Report)
    转:jmeter实践
    转:支付漏洞的三种常见类型
    转:LoadRunner获取毫秒及字符串替换实现
    转:Windows平台配置Appium+Java环境
  • 原文地址:https://www.cnblogs.com/cheungxiongwei/p/10768991.html
Copyright © 2020-2023  润新知