• numpy.stack和numpy.concatenate的区别


      在使用numpy进行矩阵运算的时候踩到的坑,原因是不能正确区分numpy.concatenate和numpy.stack在功能上的差异。

      先说numpy.concatenate,直接看文档:

    numpy.concatenate((a1a2...)axis=0out=None)

    Join a sequence of arrays along an existing axis.

    Parameters
    a1, a2, … : sequence of array_like

    The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).

    axis : int, optional

    The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.

    out : ndarray, optional

    If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified.

    Returns
    res : ndarray

    The concatenated array.

      重点在这一句:在一个已经存在的维度上连接数组列。可见numpy.concatenate可以同时连接好几个数组,并且不会生成新的维度: along an existing axis。示例如下:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> b = np.array([[5, 6]])
    >>> np.concatenate((a, b), axis=0)
    array([[1, 2],
           [3, 4],
           [5, 6]])
    >>> np.concatenate((a, b.T), axis=1)
    array([[1, 2, 5],
           [3, 4, 6]])
    >>> np.concatenate((a, b), axis=None)
    array([1, 2, 3, 4, 5, 6])
    

      

      再说numpy.stack:

    numpy.stack(arraysaxis=0out=None)

    Join a sequence of arrays along a new axis.

    The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension.

    New in version 1.10.0.

    Parameters
    arrays : sequence of array_like

    Each array must have the same shape.

    axis : int, optional

    The axis in the result array along which the input arrays are stacked.

    out : ndarray, optional

    If provided, the destination to place the result. The shape must be correct, matching that of what stack would have returned if no out argument were specified.

    Returns
    stacked : ndarray

    The stacked array has one more dimension than the input arrays.

      和concatenate不同的是,stack Joins a sequence of arrays along a new axis.也就是说stack会生成一个新的维度。而且stack适用的条件很强,数组序列必须全部有相同的shape。用例子来说明,使用最多的大概是在第0维stack:

    >>> arrays = [np.random.randn(3, 4) for _ in range(10)]    # arrays是一个长度为10的List,每一个元素都是(3,4)的ndarray
    >>> np.stack(arrays, axis=0).shape
    (10, 3, 4)
    >>> np.stack(arrays, axis=1).shape
    (3, 10, 4)
    >>> np.stack(arrays, axis=2).shape
    (3, 4, 10)

      一个清晰的区别是返回的数组比输入数组多了一维。

  • 相关阅读:
    余弦定理和新闻的分类
    关于复旦大学自然语言处理实验室的基准语料
    Where name like “MySQL%” ===> Where name>=”MySQL”and name<”MySQM”
    xcode4.2 IOS5 编译低于sdk4.3的程序的办法(转)
    CGContextRef相关的操作
    IOS5修改UIToolBar 和UINavigationBar 的背景颜色
    LLVM是个什么东东
    oneway在Xcode4的使用
    XCode4 App Store提交小结(转)
    怎么样才能方便的隐藏键盘
  • 原文地址:https://www.cnblogs.com/chester-cs/p/11833520.html
Copyright © 2020-2023  润新知