• 机器学习基石笔记:Homework #3 LinReg&LogReg相关习题


    原文地址:http://www.jianshu.com/p/311141f2047d

    问题描述

    图1 13
    图2 14-15
    图3 18
    图4 19-20

    程序实现

    13-15

    # coding: utf-8
    
    import numpy as np
    import numpy.random as random
    import matplotlib.pyplot as plt
    
    def sign(x):
        if(x>=0):
            return 1
        else:
            return -1
    
    def gen_data():
        x1=random.uniform(-1,1,1000)
        x2=random.uniform(-1,1,1000)
        id_array=random.permutation([i for i in range(1000)])
        dataY=np.zeros((1000,1))
        for i in range(1000):
            if(i<1000*0.1):
                i = id_array[i]
                dataY[i][0]=-sign(x1[i]**2+x2[i]**2-0.6)
            else:
                i = id_array[i]
                dataY[i][0]=sign(x1[i]**2+x2[i]**2-0.6)
        dataX=np.concatenate((np.ones((1000,1)),np.array(x1).reshape((1000,1)),np.array(x2).reshape((1000,1))),axis=1)
        return dataX,dataY
    
    def w_lin(dataX,dataY):
        dataX_T=np.transpose(dataX)
        tmp=np.dot(np.linalg.inv(np.dot(dataX_T,dataX)),dataX_T)
        return np.dot(tmp,dataY)
    
    def pred(dataX,wLIN):
        pred=np.dot(dataX,wLIN)
        num_data=dataX.shape[0]
        for i in range(num_data):
            pred[i][0]=sign(pred[i][0])
        return pred
    
    def zero_one_cost(pred,dataY):
        return np.sum(pred!=dataY)/dataY.shape[0]
    
    def feat_transform(dataX):
        num_data=dataX.shape[0]
        tmp1=dataX[:,1]*dataX[:,2]
        tmp2=dataX[:,1]**2
        tmp3=dataX[:,2]**2
        new_dataX=np.concatenate(
            (dataX,tmp1.reshape((num_data,1)),tmp2.reshape((num_data,1)),tmp3.reshape((num_data,1))),axis=1)
        return new_dataX
    
    
    if __name__=="__main__":
    
        cost_list=[]
        for i in range(1000):
            dataX,dataY=gen_data()
            wLIN=w_lin(dataX,dataY)
            cost_list.append(zero_one_cost(pred(dataX,wLIN),dataY))
        # show results
        print("the average Ein over 1000 experiments: ",sum(cost_list)/len(cost_list))
        plt.figure()
        plt.hist(cost_list)
        plt.xlabel("zero_one Ein")
        plt.ylabel("frequency")
        plt.title("13")
        plt.savefig("13.png")
    
        W=[]
        cost_list=[]
        for i in range(1000):
            # train
            dataX,dataY=gen_data()
            dataX=feat_transform(dataX)
            wLIN=w_lin(dataX,dataY)
            W.append(wLIN[:,0].tolist())
            # test
            testX, testY = gen_data()
            testX = feat_transform(testX)
            cost_list.append(zero_one_cost(pred(testX, wLIN), testY))
        min_cost=min(cost_list)
        min_id=cost_list.index(min_cost)
        print(W[min_id])
        W=np.array(W)
        # show w3
        print("the average w3 over 1000 experiments: ",np.average(W,axis=0)[3])
        plt.figure()
        plt.hist(W[:,3].tolist())
        plt.xlabel("w3")
        plt.ylabel("frequency")
        plt.title("14")
        plt.savefig("14.png")
        # show Eout
        print("the average Eout over 1000 experiments: ",sum(cost_list)/len(cost_list))
        plt.figure()
        plt.hist(cost_list)
        plt.xlabel("Eout")
        plt.ylabel("frequency")
        plt.title("15")
        plt.savefig("15.png")
    

    18-20

    # coding: utf-8
    
    import numpy as np
    
    def sigmoid(x):
        return 1/(1+np.e**(-x))
    
    def read_data(dataFile):
        with open(dataFile,'r') as f:
            lines=f.readlines()
            data_list=[]
            for line in lines:
                line=line.strip().split()
                data_list.append([1.0] + [float(l) for l in line])
            dataArray=np.array(data_list)
            num_data=dataArray.shape[0]
            num_dim=dataArray.shape[1]-1
            dataX=dataArray[:,:-1].reshape((num_data,num_dim))
            dataY=dataArray[:,-1].reshape((num_data,1))
            return dataX,dataY
    
    def gradient_descent(w,dataX,dataY,eta):
        assert w.shape[0]==dataX.shape[1],"wrong shape!"
        assert w.shape[1]==1,"wrong shape of w!"
        num_data=dataX.shape[0]
        num_dim=dataX.shape[1]
        tmp1=-dataY*dataX
        tmp2=-dataY*np.dot(dataX,w)
        for i in range(num_data):
            tmp2[i][0]=sigmoid(tmp2[i][0])
        tmp3=np.average(tmp1 * tmp2, axis=0)
        new_w=w-eta*tmp3.reshape((num_dim,1))
        return new_w
    
    def s_gradient_descent(w,dataX,dataY,eta):
        assert w.shape[0]==dataX.shape[1],"wrong shape!"
        assert w.shape[1]==1,"wrong shape of w!"
        assert dataX.shape[0]==1,"wrong shape of x!"
        assert dataY.shape[0]==1,"wrong shape of y!"
        num_dim=dataX.shape[1]
        tmp1=-dataY*dataX
        tmp2=-dataY*np.dot(dataX,w)
        tmp2[0][0]=sigmoid(tmp2[0][0])
        tmp3=np.average(tmp1 * tmp2, axis=0)
        new_w=w-eta*tmp3.reshape((num_dim,1))
        return new_w
    
    def pred(wLOG,dataX):
        pred=np.dot(dataX,wLOG)
        num_data=dataX.shape[0]
        for i in range(num_data):
            pred[i][0]=sigmoid(pred[i][0])
            if(pred[i][0]>=0.5):
                pred[i][0]=1
            else:
                pred[i][0]=-1
        return pred
    
    def zero_one_cost(pred,dataY):
        return np.sum(pred!=dataY)/dataY.shape[0]
    
    
    if __name__=="__main__":
        # train
        dataX,dataY=read_data("hw3_train.dat")
        num_dim=dataX.shape[1]
        w=np.zeros((num_dim,1))
        print("
    18")
        for i in range(2000):
            w=gradient_descent(w,dataX,dataY,eta=0.001)
        print("the weight vector within g: ",w[:,0])
        # test
        testX,testY=read_data("hw3_test.dat")
        Eout=zero_one_cost(pred(w,testX),testY)
        print("the Eout(g) on the test set: ",Eout)
    
        print("
    18.1")
        w = np.zeros((num_dim, 1))
        for i in range(20000):
            w = gradient_descent(w, dataX, dataY, eta=0.001)
        print("the weight vector within g: ", w[:, 0])
        # test
        Eout = zero_one_cost(pred(w, testX), testY)
        print("the Eout(g) on the test set: ", Eout)
    
        print("
    19")
        w=np.zeros((num_dim,1))
        for i in range(2000):
            w = gradient_descent(w, dataX, dataY, eta=0.01)
        print("the weight vector within g: ", w[:, 0])
        # test
        Eout = zero_one_cost(pred(w, testX), testY)
        print("the Eout(g) on the test set: ", Eout)
    
        print("
    20")
        w=np.zeros((num_dim,1))
        num_data=dataX.shape[0]
        for i in range(2000):
            i%=num_data
            x=dataX[i,:].reshape((1,num_dim))
            y=dataY[i,:].reshape((1,1))
            w=s_gradient_descent(w,x,y,eta=0.001)
        print("the weight vector within g: ", w[:, 0])
        # test
        Eout = zero_one_cost(pred(w, testX), testY)
        print("the Eout(g) on the test set: ", Eout)
    

    运行结果及分析

    13-15

    图5 13-15结果1
    图6 13-15结果2
    图7 13-15结果3
    图8 13-15结果4

    18-20

    图9 18-20结果

    对比18和18.1,可知迭代步长较小时,需要较多迭代次数才能达到较优效果。

  • 相关阅读:
    数据库编程总结
    Excel文件操作方式比较
    大数据导入Excel
    导出Excel
    duilib库分析: 消息流程分析
    ucosII移植
    Log Parser Studio 分析 IIS 日志
    google 搜索关键字技巧
    未知的反物质世界的瞎想
    Scratch 简单的小游戏 --- 碰碰球
  • 原文地址:https://www.cnblogs.com/cherrychenlee/p/10800172.html
Copyright © 2020-2023  润新知