• Python实现二叉树的前序、中序、后序、层次遍历


      有关树的理论部分描述:《数据结构与算法》-4-树与二叉树

      下面代码均基于python实现,包含:

    • 二叉树的前序、中序、后序遍历的递归算法和非递归算法
    • 层次遍历
    • 由前序序列、中序序列重构二叉树
    • 由后序序列、中序序列重构二叉树
    # -*- coding: utf-8 -*-
    # @Time: 2019-04-15 18:35
    # @Author: chen
    
    class NodeTree:
        def __init__(self, root=None, lchild=None, rchild=None):
            """创建二叉树
            Argument:
                lchild: BinTree
                    左子树
                rchild: BinTree
                    右子树
    
            Return:
                Tree
            """
            self.root = root
            self.lchild = lchild
            self.rchild = rchild
    
    class BinTree:
    
        # -----------前序遍历 ------------
        # 递归算法
        def pre_order_recursive(self, T):
            if T == None:
                return
            print(T.root, end=' ')
            self.pre_order_recursive(T.lchild)
            self.pre_order_recursive(T.rchild)
    
        # 非递归算法
        def pre_order_non_recursive(self, T):
            """借助栈实现前驱遍历
            """
            if T == None:
                return
            stack = []
            while T or len(stack) > 0:
                if T:
                    stack.append(T)
                    print(T.root, end=' ')
                    T = T.lchild
                else:
                    T = stack[-1]
                    stack.pop()
                    T = T.rchild
    
        # -----------中序遍历 ------------
        # 递归算法
        def mid_order_recursive(self, T):
            if T == None:
                return
            self.mid_order_recursive(T.lchild)
            print(T.root, end=' ')
            self.mid_order_recursive(T.rchild)
    
        # 非递归算法
        def mid_order_non_recursive(self, T):
            """借助栈实现中序遍历
            """
            if T == None:
                return
            stack = []
            while T or len(stack) > 0:
                if T:
                    stack.append(T)
                    T = T.lchild
                else:
                    T = stack.pop()
                    print(T.root, end=' ')
                    T = T.rchild
    
    
        # -----------后序遍历 ------------
        # 递归算法
        def post_order_recursive(self, T):
            if T == None:
                return
            self.post_order_recursive(T.lchild)
            self.post_order_recursive(T.rchild)
            print(T.root, end=' ')
    
        # 非递归算法
        def post_order_non_recursive(self, T):
            """借助两个栈实现后序遍历
            """
            if T == None:
                return
            stack1 = []
            stack2 = []
            stack1.append(T)
            while stack1:
                node = stack1.pop()
                if node.lchild:
                    stack1.append(node.lchild)
                if node.rchild:
                    stack1.append(node.rchild)
                stack2.append(node)
            while stack2:
                print(stack2.pop().root, end=' ')
            return
    
        # -----------层次遍历 ------------
        def level_order(self, T):
            """借助队列(其实还是一个栈)实现层次遍历
            """
            if T == None:
                return
            stack = []
            stack.append(T)
            while stack:
                node = stack.pop(0)  # 实现先进先出
                print(node.root, end=' ')
                if node.lchild:
                    stack.append(node.lchild)
                if node.rchild:
                    stack.append(node.rchild)
    
        # ----------- 前序遍历序列、中序遍历序列 —> 重构二叉树 ------------
        def tree_by_pre_mid(self, pre, mid):
            if len(pre) != len(mid) or len(pre) == 0 or len(mid) == 0:
                return
            T = NodeTree(pre[0])
            index = mid.index(pre[0])
            T.lchild = self.tree_by_pre_mid(pre[1:index+1], mid[:index])
            T.rchild = self.tree_by_pre_mid(pre[index+1:], mid[index+1:])
            return T
    
        # ----------- 后序遍历序列、中序遍历序列 —> 重构二叉树 ------------
        def tree_by_post_mid(self, post, mid):
            if len(post) != len(mid) or len(post) == 0 or len(mid) == 0:
                return
            T = NodeTree(post[-1])
            index = mid.index(post[-1])
            T.lchild = self.tree_by_post_mid(post[:index], mid[:index])
            T.rchild = self.tree_by_post_mid(post[index:-1], mid[index+1:])
            return T
    
    if __name__ == '__main__':
    
        # ----------- 测试:前序、中序、后序、层次遍历 -----------
        # 创建二叉树
        nodeTree = NodeTree(1,
                 lchild=NodeTree(2,
                             lchild=NodeTree(4,
                                         rchild=NodeTree(7))),
                 rchild=NodeTree(3,
                             lchild=NodeTree(5),
                             rchild=NodeTree(6)))
        T = BinTree()
        T.pre_order_recursive(nodeTree)  # 前序遍历-递归
        print('
    ')
        T.pre_order_non_recursive(nodeTree)  # 前序遍历-非递归
        print('
    ')
        T.mid_order_recursive(nodeTree)  # 中序遍历-递归
        print('
    ')
        T.mid_order_non_recursive(nodeTree)  # 前序遍历-非递归
        print('
    ')
        T.post_order_recursive(nodeTree)  # 后序遍历-递归
        print('
    ')
        T.post_order_non_recursive(nodeTree)  # 前序遍历-非递归
        print('
    ')
        T.level_order(nodeTree)  # 层次遍历
        print('
    ')
    
        print('==========================================================================')
        
        # ----------- 测试:由遍历序列构造二叉树 -----------
        T = BinTree()
        pre = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
        mid = ['B', 'C', 'A', 'E', 'D', 'G', 'H', 'F', 'I']
        post = ['C', 'B', 'E', 'H', 'G', 'I', 'F', 'D', 'A']
       
        newT_pre_mid = T.tree_by_pre_mid(pre, mid)  # 由前序序列、中序序列构造二叉树
        T.post_order_recursive(newT_pre_mid)  # 获取后序序列
        print('
    ')
        
        newT_post_mid = T.tree_by_post_mid(post, mid)  # 由后序序列、中序序列构造二叉树   
        T.pre_order_recursive(newT_post_mid)  # 获取前序序列
    

      测试用的两个二叉树:

  • 相关阅读:
    Spring温故而知新 – bean的装配
    Lambda表达式和表达式树
    委托的内部机制
    委托(C#)
    linux wdcp安装
    linux各个文件夹作用
    linux基本命令
    python调用html内的js方法
    Win10在右键菜单添加“在此处打开命令窗口”设置项
    python read文件的r和rb的区别
  • 原文地址:https://www.cnblogs.com/chenzhen0530/p/10712793.html
Copyright © 2020-2023  润新知