• bzoj2487: Super Poker II


    Description

    I have a set of super poker cards, consisting of an infinite number of cards. For each positive composite integer p, there
    are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and Diamond(D). There are no cards of other values.
    By “composite integer”, we mean integers that have more than 2 divisors. For example, 6 is a composite integer, since it
    has 4 divisors: 1, 2, 3, 6; 7 is not a composite number, since 7 only has 2 divisors: 1 and 7. Note that 1 is not composite
    (it has only 1 divisor).
     
    Given a positive integer n, how many ways can you pick up exactly one card from each suit (i.e. exactly one spade card,
    one heart card, one club card and one diamond card), so that the card values sum to n? For example, if n=24, one way is
    4S+6H+4C+10D, shown below:

    Unfortunately, some of the cards are lost, but this makes the problem more interesting. To further make the problem even
    more interesting (and challenging!), I’ll give you two other positive integers a and b, and you need to find out all the
    answers for n=a, n=a+1, …, n=b. 

    Input

    The input contains at most 25 test cases. Each test case begins with 3 integers a, b and c, where c is the number of lost
    cards. The next line contains c strings, representing the lost cards. Each card is formatted as valueS, valueH, valueC or
    valueD, where value is a composite integer. No two lost cards are the same. The input is terminated by a=b=c=0. There
    will be at most one test case where a=1, b=50,000 and c<=10,000. For other test cases, 1<=a<=b<=100, 0<=c<=10. 
     

    Output

    For each test case, print b-a+1 integers, one in each line. Since the numbers might be large, you should output each
    integer modulo 1,000,000. Print a blank line after each test case. 
     

    Sample Input

    12 20 2
    4S 6H
    0 0 0

    Sample Output

    0
    0
    0
    0
    0
    0
    1
    0
    3

    HINT

    很简单的fft,看懂题面即可。

    code:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #include<cstring>
     5 #include<algorithm>
     6 #define maxn 131075
     7 #define pi 3.14159265358979323846
     8 #define mod 1000000
     9 using namespace std;
    10 typedef long long int64;
    11 char ch;
    12 int l,r,m,n,x,len,tot,re[maxn],prime[maxn];
    13 bool ok,bo[maxn];
    14 void read(int &x){
    15     for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
    16     for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
    17     if (ok) x=-x;
    18 }
    19 int rev(int v){
    20     int t=0;
    21     for (int i=0;i<len;i++) t<<=1,t|=v&1,v>>=1;
    22     return t;    
    23 }
    24 struct comp{
    25     double rea,ima;
    26     void clear(){rea=ima=0;}
    27     comp operator +(const comp &x){return (comp){rea+x.rea,ima+x.ima};}
    28     comp operator -(const comp &x){return (comp){rea-x.rea,ima-x.ima};}
    29     comp operator *(const comp &x){return (comp){rea*x.rea-ima*x.ima,rea*x.ima+ima*x.rea};}
    30 }a[maxn],b[maxn],c[maxn],d[maxn],Wn[2][maxn],wn,w,t1,t2;
    31 void fft(comp *a,int op){
    32     for (int i=0,t=re[i];i<n;i++,t=re[i]) if (i<t) swap(a[i],a[t]);
    33     for (int s=2;s<=n;s<<=1){
    34         wn=Wn[op][s];//cout<<wn.rea<<' '<<wn.ima<<endl;
    35         for (int i=0;i<n;i+=s){
    36             w=(comp){1,0};
    37             for (int j=i;j<i+(s>>1);j++,w=w*wn){
    38                 t1=a[j],t2=w*a[j+(s>>1)];
    39                 a[j]=t1+t2,a[j+(s>>1)]=t1-t2;
    40             }
    41         }
    42     }
    43     if (op) for (int i=0;i<n;i++) a[i].rea/=n,a[i].ima/=n;
    44 }
    45 void work(){
    46     for (int i=0;i<=r;i++) a[i].rea=(int64)round(a[i].rea)%mod,a[i].ima=0;
    47     for (int i=r+1;i<n;i++) a[i].clear();
    48 }
    49 void init(){
    50     for (int i=2;i<maxn;i<<=1) Wn[0][i]=(comp){cos(2*pi/i),sin(2*pi/i)};
    51     for (int i=2;i<maxn;i<<=1) Wn[1][i]=(comp){cos(-2*pi/i),sin(-2*pi/i)};
    52     for (int i=2;i<=50000;i++){
    53         if (!bo[i]) prime[++tot]=i;
    54         for (int j=1;j<=tot&&i*prime[j]<=50000;j++){
    55             bo[i*prime[j]]=1;
    56             if (!(i%prime[j])) break;
    57         }
    58     }    
    59 }
    60 int main(){
    61     for (init(),read(l),read(r),read(m);l&&r;read(l),read(r),read(m)){
    62         for (len=0,n=1;n<((r+1)<<1);len++,n<<=1);
    63         for (int i=0;i<n;i++) re[i]=rev(i);
    64         for (int i=0;i<n;i++) a[i].clear(),b[i].clear(),c[i].clear(),d[i].clear();
    65         for (int i=2;i<r;i++) a[i].rea=b[i].rea=c[i].rea=d[i].rea=bo[i];
    66         for (int i=1;i<=m;i++){
    67             read(x);
    68             if (ch=='S') a[x].rea=0;
    69             else if (ch=='H') b[x].rea=0;
    70             else if (ch=='C') c[x].rea=0;
    71             else if (ch=='D') d[x].rea=0;
    72         }
    73         fft(a,0),fft(b,0),fft(c,0),fft(d,0);
    74         for (int i=0;i<n;i++) a[i]=a[i]*b[i];
    75         fft(a,1),work(),fft(a,0);
    76         for (int i=0;i<n;i++) a[i]=a[i]*c[i];
    77         fft(a,1),work(),fft(a,0);
    78         for (int i=0;i<n;i++) a[i]=a[i]*d[i];
    79         fft(a,1),work();
    80         for (int i=l;i<=r;i++) printf("%d
    ",(int)a[i].rea);
    81         puts("");
    82     }
    83     return 0;
    84 }
  • 相关阅读:
    Redis——发布/订阅
    Redis——任务队列
    GOF设计模式——Builder模式
    GOF设计模式——Prototype模式
    GOF设计模式——Singleton模式
    shell 脚本中的数学计算表达
    shell $'somestring'
    shell if-elif-elif-fi
    vim 使用
    疑问:为什么要使用href=”javascript:void(0);”?
  • 原文地址:https://www.cnblogs.com/chenyushuo/p/4677912.html
Copyright © 2020-2023  润新知