• 潮位离散


    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

    time_parse1 = lambda date: datetime.datetime.strptime(date, '%Y/%m/%d %H:%M')

    df = pd.read_csv('./water_level_baozhen_1.csv',parse_dates=['date'],date_parser=time_parse1,encoding='utf-8')


    # time_p = str(df.iat[-1,0]).split()[0] + ' ' + '0' + ':' + '00' + ':' + '00'
    # print(time_p)

    time_list_1 = []
    time_list_2 = []
    list_1 = []
    for i in range(24):
    time_list_1.append('start_time' + str(i))
    time_list_2.append('start_time' + str(i))
    list_1.append('df' + str(i))
    time_list_1[0] = datetime.datetime.strptime("0:00:00", "%H:%M:%S").time()
    time_list_2[0] = datetime.datetime.strptime("0:00:09", "%H:%M:%S").time()
    for i in range(1, 24):
    time_list_1[i] = (datetime.datetime.strptime("00:00:00", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    time_list_2[i] = (datetime.datetime.strptime("00:00:09", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    # print(time_list_1)
    # print(time_list_2)

    list_1[0] = df[
    (df['date'].dt.time >= time_list_1[0]) & (df['date'].dt.time <= time_list_2[0])]
    t = list_1[0]

    # print(list_1[0])
    for x1 in range(1, 24):
    list_1[x1] = df[
    (df['date'].dt.time >= time_list_1[x1]) & (df['date'].dt.time <= time_list_2[x1])]

    for i in range(1,24):
    t = t.append(list_1[i])


    t1 = copy.deepcopy(t)
    t1 = t1.reset_index(drop=True)
    t1 =t1.sort_values(by = 'date')
    t2 = t1.reset_index(drop=True)
    t2.to_csv('./baozhen_hour.csv')




  • 相关阅读:
    luogu P1833 樱花 看成混合背包
    luogu P1077 摆花 基础记数dp
    luogu P1095 守望者的逃离 经典dp
    Even Subset Sum Problem CodeForces
    Maximum White Subtree CodeForces
    Sleeping Schedule CodeForces
    Bombs CodeForces
    病毒侵袭持续中 HDU
    病毒侵袭 HDU
    Educational Codeforces Round 35 (Rated for Div. 2)
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688183.html
Copyright © 2020-2023  润新知