• adcp24小时数据自动化处理,从winriver转码的文件中处理


    import numpy as np
    import pandas as pd
    import datetime
    import re
    import time
    import glob
    import copy


    df = pd.read_csv(r'.3.csv')


    a = []
    b = []
    list1 = []
    for i in range(len(df['date'])): # 重读日期格式,生成date1列
    a.append(datetime.datetime.strptime(df.date[i], '%Y-%m-%d %H:%M:%S'))
    s = pd.Series(a)
    df['date1'] = s
    df.drop('date', inplace=True, axis=1)

    # 数据筛选 按照日期来进行
    rmcols = ['ens', 'dist']
    df.drop(rmcols, inplace=True, axis=1)
    df.rename(columns={'value': 'val'}, inplace=True)
    # print(df)
    time_list_1 = []
    time_list_2 = []
    time_list_3 = []
    time_list_4 = []
    list_1 = []
    list_2 = []
    list_3 = []
    list_4 = []
    list_5 = []
    d1 = ['hb', 'h1', 'val', 'date']

    for i in range(24):
    time_list_1.append('start_time' + str(i))
    time_list_2.append('end_time' + str(i))
    time_list_3.append('zhen_dian' + str(i))
    time_list_4.append('zhen_dian' + str(i))
    list_1.append('df' + str(i))
    list_2.append('df' + str(i))
    list_3.append('df' + str(i))
    list_4.append('df' + str(i))
    list_5.append('df' + str(i))

    time_list_1[0] = datetime.datetime.strptime("08:55:00", "%H:%M:%S").time() # 实现 确定初始时间
    time_list_2[0] = datetime.datetime.strptime("09:05:09", "%H:%M:%S").time() # 实现 确定结束时间
    time_list_3[0] = datetime.datetime.strptime("08:00:00", "%H:%M:%S").time() # 实现 整点时间
    time_list_4[0] = datetime.datetime.strptime("08:00:09", "%H:%M:%S").time() # 实现 整点到0.9s的时间序列,进行筛选

    for i in range(1, 24):
    time_list_1[i] = (datetime.datetime.strptime("08:55:00", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    time_list_2[i] = (datetime.datetime.strptime("09:05:09", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    time_list_3[i] = (datetime.datetime.strptime("08:00:00", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    time_list_4[i] = (datetime.datetime.strptime("08:00:09", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    print(time_list_1)
    print(time_list_2)
    print(time_list_3)
    list_1[0] = df[
    (df['date1'].dt.time >= time_list_1[0]) & (df['date1'].dt.time <= time_list_2[0]) & (df['variable'] == 'v')]
    for x1 in range(1, 24):
    list_1[x1] = df[
    (df['date1'].dt.time >= time_list_1[x1]) & (df['date1'].dt.time <= time_list_2[x1]) & (df['variable'] == 'v')]
    # print(list_1)
    s1 = list_1[0]
    s2 = len(list_1[1])
    p1 = []
    for xp2 in range(1, 24):
    if len(list_1[xp2]) != 0:
    s1 = s1.append(list_1[xp2]) # 用原来的值拷贝,头疼。傻子
    elif len(list_1[xp2]) == 0:
    a = 0
    rmcols1 = ['variable', 'lon', 'lat']
    s1.drop(rmcols1, inplace=True, axis=1)
    s1.reset_index(inplace=True, drop=True)

    for l1 in range(24):
    # c = list_1[l1]
    # print(c)
    if len(list_1[l1]) > 0:
    list_1[l1].reset_index(inplace=True, drop=True) # 总结果
    s4 = list_1[l1]
    # print(s4)
    s3 = list_1[l1].loc[0, 'date1']
    # print(s3)
    time_1 = datetime.datetime.strftime(s3, "%Y-%m-%d %H")
    time_2 = time_1.split()[0] + ' ' + str(int(time_1.split()[1]) + 1) + ':' + '00'
    time_3 = datetime.datetime.strptime(time_2, "%Y-%m-%d %H:%M")
    i1 = list_1[l1]['h'].mean()
    # print(i1)
    c1 = list_1[l1].groupby('hb')
    # print(c1.groups)
    c2 = c1.mean()
    # print(c2)

    c3 = np.full([len(c2['h']), 1], np.nan)
    c2['h1'] = c3
    c2['date'] = c3
    c2['date'] = c2['date'].apply(lambda x: time_3)
    c2['h1'] = c2['h1'].apply(lambda x: i1)
    list_2[l1] = c2
    elif len(list_1[l1]) == 0:
    list_2[l1] = list_1[l1]
    # print(list_2)


    # 对于分类号的数据进行重新的索引和排序工作
    pt1 = list_2[0]
    for oe1 in range(1, 24):
    if len(list_2[oe1]) != 0:
    pt1 = pt1.append(list_2[oe1])
    # # print(pt1)
    # 对于分类号的数据进行加首行和尾行信息 # 第一生成同类型的数据信息并将其进行汇总
    rmcols2 = ['lat', 'lon', 'h']
    pt1.drop(rmcols2, inplace=True, axis=1)
    pt1 = pt1.reset_index()
    # print(pt1)
    #
    # 建立一行4四列的功能
    np_1 = np.full([1, 4], np.nan)
    pt2 = pd.DataFrame(np_1,columns=d1)
    # print(pt2)
    # 进行加首尾行的工作
    for op1 in range(24):
    list_3[op1] =pt1[(pt1['date'].dt.time >= time_list_3[op1])&(pt1['date'].dt.time <= time_list_4[op1])]
    list_4[op1] = pt2.append(list_3[op1],ignore_index=True)

    list_3[op1] = list_4[op1].append(pt2,ignore_index=True)
    # print(list_3)
    # c_1= list_3[1]

    # 统计信息,写入相对水深的值,计算相对水深的流速信息
    ax = np.full([6,4],np.nan)
    ax1 = pd.DataFrame(ax,columns=d1)
    for i in range(24):
    list_5[i] = copy.deepcopy(ax1)
    # print(list_5)
    for i in range(24):
    len_1 = len(list_3[i]['hb'])
    # print(len_1)
    if len_1==2:
    list_3[i] =list_3[i]
    else: # 实现了对0/1h层流速的赋值
    list_3[i].iat[0, 0] = 0 # 剖面水深
    list_3[i].iat[0, 1] = list_3[i].iat[1, 1] # 0h 总水深
    list_3[i].iat[0, 2] = list_3[i].iat[1, 2] * 1.02 # 表层流速
    list_3[i].iat[0, 3] = list_3[i].iat[1, 3] # 测量时间
    list_3[i].iat[(len_1 - 1), 0] = 1 # 底层剖面水深
    list_3[i].iat[(len_1 - 1), 1] = list_3[i].iat[(len_1 - 2), 1]
    list_3[i].iat[(len_1 - 1), 2] = list_3[i].iat[(len_1 - 2), 2]
    list_3[i].iat[(len_1 - 1), 3] = list_3[i].iat[(len_1 - 2), 3]
    # 实现 相对水深的转化
    for j in range(len(list_3[i]['h1'])):
    a1 = list_3[i].iat[j,0]
    h2 = list_3[i].iat[j,1]
    # print(a1)
    # # print(h2)
    if a1 ==0:
    list_5[i].iat[0, 0] = 0
    list_5[i].iat[0, 1] = list_3[i].iat[1, 1] # 0h的总水深
    list_5[i].iat[0, 2] = list_3[i].iat[0, 2] # 0h的流速
    list_5[i].iat[0, 3] = list_3[i].iat[0, 3] # 0 h的时间
    elif a1 ==1:

    id_1 = list_3[i].loc[list_3[i]['hb'] == 1]
    # print(id_1)
    list_5[i].iat[5, 0] = 1 # 1h
    list_5[i].iat[5, 1] = id_1.iat[0, 1] # 1h的总水深
    list_5[i].iat[5, 2] = id_1.iat[0, 2] # 1h的流速
    list_5[i].iat[5, 3] = id_1.iat[0, 3] # 1h的日期
    elif 0.18 * h2 < a1 < 0.21 * h2:

    id_2 = list_3[i].loc[list_3[i]['hb'] == a1]
    # print(id_2)
    list_5[i].iat[1, 0] = 0.2
    list_5[i].iat[1, 1] = id_2.iat[0, 1]
    list_5[i].iat[1, 2] = id_2.iat[0, 2]
    list_5[i].iat[1, 3] = id_2.iat[0, 3]

    elif 0.38 * h2 < a1 < 0.41 * h2:

    id_3 = list_3[i].loc[list_3[i]['hb'] == a1]
    # print(id_3)
    list_5[i].iat[2, 0] = 0.4
    list_5[i].iat[2, 1] = id_3.iat[0, 1]
    list_5[i].iat[2, 2] = id_3.iat[0, 2]
    list_5[i].iat[2, 3] = id_3.iat[0, 3]
    elif 0.58 * h2 < a1 < 0.61 * h2:
    # print(a1)
    id_4 = list_3[i].loc[list_3[i]['hb'] == a1]
    # print(id_4)
    list_5[i].iat[3, 0] = 0.6
    list_5[i].iat[3, 1] = id_4.iat[0, 1]
    list_5[i].iat[3, 2] = id_4.iat[0, 2]
    list_5[i].iat[3, 3] = id_4.iat[0, 3]
    elif 0.79 * h2 < a1 < 0.81 * h2:
    # print(a1)
    id_5 = list_3[i].loc[list_3[i]['hb'] == a1]
    # print(id_5)
    list_5[i].iat[4, 0] = 0.8
    list_5[i].iat[4, 1] = id_5.iat[0, 1]
    list_5[i].iat[4, 2] = id_5.iat[0, 2]
    list_5[i].iat[4, 3] = id_5.iat[0, 3]




    # print(list_5)
    srt =list_5[0]
    for i in range(1,24):
    srt = srt.append(list_5[i])


    srt = srt.dropna()
    srt.reset_index(inplace=True,drop=True)

    op2 = srt.groupby(['hb'])
    for date1, op3 in op2:
    print(date1)

    print(op3)
    需要自己把数据改写成24小时制,csv文件需要自己命名。之后看能否用面向对象的语言去写它。改写成exe文件
  • 相关阅读:
    matlab从ECG信号数据趋势项的消除
    matlab使用移动平均滤波器、重采样和Hampel过滤器进行信号平滑处理
    R语言如何做马尔科夫转换模型markov switching model
    python主题建模可视化LDA和T-SNE交互式可视化
    R语言Wald检验 vs 似然比检验
    R语言rjags使用随机效应进行臭氧数据分析
    matlab对MCMC贝叶斯方法用于加筋复合板的冲击载荷识别
    4. 纯 CSS 创作一个金属光泽 3D 按钮特效
    3.纯 CSS 创作一个容器厚条纹边框特效
    2.纯 CSS 创作一个矩形旋转 loader 特效
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/13634554.html
Copyright © 2020-2023  润新知