• java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用


    java连接elasticsearch 进行聚合查询进行相应操作

    一:对单个字段进行分组求和

    1、表结构图片:

    根据任务id分组,分别统计出每个任务id下有多少个文字标题

    1.SQL:select id, count(*as sum from task group by taskid;   

    java ES连接工具类

    public class ESClientConnectionUtil {
        public static TransportClient client=null;
        public final static String HOST = "192.168.200.211"; //服务器部署
        public final static Integer PORT = 9301; //端口
    
        public static TransportClient  getESClient(){
            System.setProperty("es.set.netty.runtime.available.processors", "false");
            if (client == null) {
                synchronized (ESClientConnectionUtil.class) {
                    try {
                        //设置集群名称
                        Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();
                        //创建client
                        client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
                    } catch (Exception ex) {
                        ex.printStackTrace();
    
                        System.out.println(ex.getMessage());
                    }
                }
            }
            return client;
        }
        public static TransportClient  getESClientConnection(){
            if (client == null) {
                System.setProperty("es.set.netty.runtime.available.processors", "false");
                    try {
                        //设置集群名称
                        Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();
                        //创建client
                        client = new PreBuiltTransportClient(settings).addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
                    } catch (Exception ex) {
                        ex.printStackTrace();
                        System.out.println(ex.getMessage());
                }
            }
            return client;
        }
    
        //判断索引是否存在
        public static boolean judgeIndex(String index){
            client= getESClientConnection();
             IndicesAdminClient adminClient;
            //查询索引是否存在
            adminClient= client.admin().indices();
            IndicesExistsRequest request = new IndicesExistsRequest(index);
            IndicesExistsResponse responses = adminClient.exists(request).actionGet();
    
            if (responses.isExists()) {
                return true;
            }
            return false;
        }
    }

    java ES语句(根据单列进行分组求和)

    //根据 任务id分组进行求和
      SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
    //根据taskid进行分组统计,统计出的列别名叫sum TermsAggregationBuilder termsBuilder
    = AggregationBuilders.terms("sum").field("taskid");
    sbuilder.addAggregation(termsBuilder); SearchResponse responses
    = sbuilder.execute().actionGet(); //得到这个分组的数据集合 Terms terms = responses.getAggregations().get("sum"); List<BsKnowledgeInfoDTO> lists = new ArrayList<>(); for(int i=0;i<terms.getBuckets().size();i++){ //statistics String id =terms.getBuckets().get(i).getKey().toString();//id Long sum =terms.getBuckets().get(i).getDocCount();//数量 System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey()); }
    //分别打印出统计的数量和id值

     根据多列进行分组求和

    //根据 任务id分组进行求和
      SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
    //根据taskid进行分组统计,统计出的列别名叫sum
      TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid");
    //根据第二个字段进行分组
     TermsAggregationBuilder aAggregationBuilder2 = AggregationBuilders.terms("region_count").field("birthplace");
    //如果存在第三个,以此类推; sbuilder.addAggregation(termsBuilder.subAggregation(aAggregationBuilder2)); SearchResponse responses
    = sbuilder.execute().actionGet(); //得到这个分组的数据集合 Terms terms = responses.getAggregations().get("sum"); List<BsKnowledgeInfoDTO> lists = new ArrayList<>(); for(int i=0;i<terms.getBuckets().size();i++){ //statistics String id =terms.getBuckets().get(i).getKey().toString();//id Long sum =terms.getBuckets().get(i).getDocCount();//数量 System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey()); } //分别打印出统计的数量和id值

    对多个field求max/min/sum/avg

    SearchRequestBuilder requestBuilder = client.prepareSearch("hottopic").setTypes("hot");
    //根据taskid进行分组统计,统计别名为sum
            TermsAggregationBuilder aggregationBuilder1 = AggregationBuilders.terms("sum").field("taskid") 
    //根据tasktatileid进行升序排列 .order(Order.aggregation("tasktatileid", true));
    // 求tasktitleid 进行求平均数 别名为avg_title
    AggregationBuilder aggregationBuilder2 = AggregationBuilders.avg("avg_title").field("tasktitleid");
    // AggregationBuilder aggregationBuilder3
    = AggregationBuilders.sum("sum_taskid").field("taskid"); requestBuilder.addAggregation(aggregationBuilder1.subAggregation(aggregationBuilder2).subAggregation(aggregationBuilder3)); SearchResponse response = requestBuilder.execute().actionGet(); Terms aggregation = response.getAggregations().get("sum"); Avg terms2 = null; Sum term3 = null; for (Terms.Bucket bucket : aggregation.getBuckets()) { terms2 = bucket.getAggregations().get("avg_title"); // org.elasticsearch.search.aggregations.metrics.avg.InternalAvg term3 = bucket.getAggregations().get("sum_taskid"); // org.elasticsearch.search.aggregations.metrics.sum.InternalSum System.out.println("编号=" + bucket.getKey() + ";平均=" + terms2.getValue() + ";总=" + term3.getValue()); }

    如上内容若有不恰当支持,请各位多多包涵并进行点评。技术在于沟通!

  • 相关阅读:
    纯js实现10分钟倒计时
    js中的constructor
    双指放大缩小问题(不需要第三方插件)
    js异步加载的3种方式(转载)
    5种处理js跨域问题方法汇总(转载)
    oncopy="document.selection.empty()"跟oncopy="return false"什么区别?
    十进制 转换为 二进制
    99%的人都理解错了HTTP中GET与POST的区别(转载
    简单封装:检测邮箱是否合法
    Xshell记录日志的方法
  • 原文地址:https://www.cnblogs.com/chenyuanbo/p/9973311.html
Copyright © 2020-2023  润新知