大致题意: 让你填完整一个(16*16)的数独。
解题思路
我们知道,数独问题显然可以用(DLX)解决。
考虑对于一个数独,它要满足的要求为:每个位置都必须有数,每一行都必须有全部(16)个数,每一列都必须有全部(16)个数,每一个(16)宫格都必须有全部(16)个数。
我们定义一个状态((i,j,k)),表示在第(i)行第(j)列填(k)。
对于一种填法它可以同时满足(4)种要求中各一种,因此如果把一种填法看作(DLX)中的一行,则每一行有(4)个(1)。
注意,对于已经给出数的位置,我们只能选择给出的那种填法, 否则, 可以选择任意数,有(16)种填法。
而对于这(4)种限制,每种都要求有(256)个,因此(DLX)共有(1024)列。
然后就可以按此跑(DLX)板子了。
具体实现详见代码。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
using namespace std;
char a[20][20];struct Operate {int x,y,v;}p[(1<<12)+5];
class DancingLinksX//DLX模板
{
private:
int tot,sz[(1<<10)+5],lnk[(1<<12)+5],res[(1<<8)+5];
struct node
{
int x,y,u,d,l,r;
I node(CI X=0,CI Y=0,CI U=0,CI D=0,CI L=0,CI R=0):x(X),y(Y),u(U),d(D),l(L),r(R){}
}O[(1<<14)+5];
I bool Dance(CI x)
{
#define Delete(x)
{
O[O[O[x].l].r=O[x].r].l=O[x].l;
for(RI i=O[x].d;i^x;i=O[i].d) for(RI j=O[i].r;j^i;j=O[j].r)
O[O[O[j].u].d=O[j].d].u=O[j].u,--sz[O[j].y];
}
#define Regain(x)
{
for(RI i=O[x].d;i^x;i=O[i].d) for(RI j=O[i].r;j^i;j=O[j].r)
O[O[j].u].d=O[O[j].d].u=j,++sz[O[j].y];
O[O[x].l].r=O[O[x].r].l=x;
}
if(!O[0].r)
{
RI i;for(i=1;i^x;++i) a[p[res[i]].x][p[res[i]].y]=p[res[i]].v;//更新到数独上
for(i=1;i<=16;++i) puts(a[i]+1);return 1;//输出
}
RI i,j,t=O[0].r;for(i=O[t].r;i;i=O[i].r) sz[t]>sz[i]&&(t=i);
Delete(t);for(i=O[t].d;i^t;i=O[i].d)
{
for(res[x]=O[i].x,j=O[i].r;j^i;j=O[j].r) Delete(O[j].y);
if(Dance(x+1)) return 1;
for(j=O[i].l;j^i;j=O[j].l) Regain(O[j].y);
}Regain(t);return 0;
}
public:
I void Init(CI x)
{
RI i;for(tot=x,i=0;i<=x;++i) O[i]=node(0,i,i,i,i-1,i+1);
O[O[0].l=x].r=0,memset(lnk,-1,sizeof(lnk)),memset(sz,0,sizeof(sz));
}
I void Insert(CI x,CI y)
{
++sz[y],O[++tot]=node(x,y,y,O[y].d),O[y].d=O[O[y].d].u=tot,
~lnk[x]?(O[tot].l=lnk[x],O[tot].r=O[lnk[x]].r,O[lnk[x]].r=O[O[lnk[x]].r].l=tot)
:(lnk[x]=O[tot].l=O[tot].r=tot);
}
I void Solve() {Dance(1);}
}DLX;
int main()
{
RI Ttot,i,j,k,cnt,t=0;W(~scanf("%s",a[1]+1))
{
#define P(x,y) ((x-1<<4)+y)
#define T(x,y) (((x-1>>2)<<2)+(y+3>>2))
t++&&putchar('
');//注意输出空行
for(DLX.Init(1<<10),cnt=0,i=2;i<=16;++i) scanf("%s",a[i]+1);
for(i=1;i<=16;++i) for(j=1;j<=16;++j) for(k=1;k<=16;++k)
{
if(a[i][j]^'-'&&(a[i][j]&31)^k) continue;//对于已经给定的数,必须按这种填法填
p[++cnt].x=i,p[cnt].y=j,p[cnt].v=64|k,//存下这种填法
DLX.Insert(cnt,P(i,j)),DLX.Insert(cnt,P(i,k)+256),//每一位要有数、每一行要有全部数
DLX.Insert(cnt,P(j,k)+512),DLX.Insert(cnt,P(T(i,j),k)+768);//每一列要有全部数、每一16宫格要有全部数
}DLX.Solve();
}return 0;
}