• 使用Flask构建机器学习模型API


    1. Python环境设置和Flask基础

    Anaconda

    • 使用“Anaconda”创建一个虚拟环境。如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,“Anaconda”发行版是一个不错的选择。

      • 安装here
      • wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
      • bash Miniconda3-latest-Linux-x86_64.sh
      • source .bashrc
      • conda create --name <environment-name> python=3.6
      • source activate <environment-name>
      • 安装必要的Python包: flask & gunicorn.
    • 尝试一个简单的“Flask”Hello-World应用程序,并使用gunicorn提供服务:

      • hello-world.py

      • 编写代码:

        
        from flask import Flask
        
        app = Flask(__name__)
        
        @app.route('/users/<string:username>')
        def hello_world(username=None):
        
            return("Hello {}!".format(username))
        
        
      • 保存

      • gunicorn --bind 0.0.0.0:8000 hello-world:app

      • 如果你得到了下面的响应,你就走上了正确的道路:

      Hello World

      • 在浏览器上访问https://localhost:8000/users/any-name

      Browser

    您编写了第一个Flask应用程序。正如您现在通过几个简单的步骤所体验到的,我们能够创建可以在本地访问的web端点。未来的路也很简单。

    使用“Flask”,我们可以很容易地封装我们的机器学习模型,并将它们作为Web api来使用。此外,如果我们想创建更复杂的web应用程序(包括JavaScript ' gasps '),我们只需要进行一些修改。

    2. 构建机器学习模型

    import os 
    import json
    import numpy as np
    import pandas as pd
    from sklearn.externals import joblib
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.base import BaseEstimator, TransformerMixin
    from sklearn.ensemble import RandomForestClassifier
    
    from sklearn.pipeline import make_pipeline
    
    import warnings
    warnings.filterwarnings("ignore")
    
    data = pd.read_csv('../data/training.csv')
    
    list(data.columns)
    
    ['Loan_ID',
     'Gender',
     'Married',
     'Dependents',
     'Education',
     'Self_Employed',
     'ApplicantIncome',
     'CoapplicantIncome',
     'LoanAmount',
     'Loan_Amount_Term',
     'Credit_History',
     'Property_Area',
     'Loan_Status']
    
    data.shape
    
    (614, 13)
    
    • Finding out the null/Nan values in the columns:
    for _ in data.columns:
        print("The number of null values in:{} == {}".format(_, data[_].isnull().sum()))
    
    The number of null values in:Loan_ID == 0
    The number of null values in:Gender == 13
    The number of null values in:Married == 3
    The number of null values in:Dependents == 15
    The number of null values in:Education == 0
    The number of null values in:Self_Employed == 32
    The number of null values in:ApplicantIncome == 0
    The number of null values in:CoapplicantIncome == 0
    The number of null values in:LoanAmount == 22
    The number of null values in:Loan_Amount_Term == 14
    The number of null values in:Credit_History == 50
    The number of null values in:Property_Area == 0
    The number of null values in:Loan_Status == 0
    
    • Next step is creating training and testing datasets:
    pred_var = ['Gender','Married','Dependents','Education','Self_Employed','ApplicantIncome','CoapplicantIncome',
                'LoanAmount','Loan_Amount_Term','Credit_History','Property_Area']
    
    X_train, X_test, y_train, y_test = train_test_split(data[pred_var], data['Loan_Status'], 
                                                        test_size=0.25, random_state=42)
    
    • To make sure that the pre-processing steps are followed religiously even after we are done with experimenting and we do not miss them while predictions, we'll create a custom pre-processing Scikit-learn estimator.

    To follow the process on how we ended up with this estimator, read up on this notebook

    from sklearn.base import BaseEstimator, TransformerMixin
    
    class PreProcessing(BaseEstimator, TransformerMixin):
        """Custom Pre-Processing estimator for our use-case
        """
    
        def __init__(self):
            pass
    
        def transform(self, df):
            """Regular transform() that is a help for training, validation & testing datasets
               (NOTE: The operations performed here are the ones that we did prior to this cell)
            """
            pred_var = ['Gender','Married','Dependents','Education','Self_Employed','ApplicantIncome',
                        'CoapplicantIncome','LoanAmount','Loan_Amount_Term','Credit_History','Property_Area']
            
            df = df[pred_var]
            
            df['Dependents'] = df['Dependents'].fillna(0)
            df['Self_Employed'] = df['Self_Employed'].fillna('No')
            df['Loan_Amount_Term'] = df['Loan_Amount_Term'].fillna(self.term_mean_)
            df['Credit_History'] = df['Credit_History'].fillna(1)
            df['Married'] = df['Married'].fillna('No')
            df['Gender'] = df['Gender'].fillna('Male')
            df['LoanAmount'] = df['LoanAmount'].fillna(self.amt_mean_)
            
            gender_values = {'Female' : 0, 'Male' : 1} 
            married_values = {'No' : 0, 'Yes' : 1}
            education_values = {'Graduate' : 0, 'Not Graduate' : 1}
            employed_values = {'No' : 0, 'Yes' : 1}
            property_values = {'Rural' : 0, 'Urban' : 1, 'Semiurban' : 2}
            dependent_values = {'3+': 3, '0': 0, '2': 2, '1': 1}
            df.replace({'Gender': gender_values, 'Married': married_values, 'Education': education_values, 
                        'Self_Employed': employed_values, 'Property_Area': property_values, 
                        'Dependents': dependent_values}, inplace=True)
            
            return df.as_matrix()
    
        def fit(self, df, y=None, **fit_params):
            """Fitting the Training dataset & calculating the required values from train
               e.g: We will need the mean of X_train['Loan_Amount_Term'] that will be used in
                    transformation of X_test
            """
            
            self.term_mean_ = df['Loan_Amount_Term'].mean()
            self.amt_mean_ = df['LoanAmount'].mean()
            return self
    
    • Convert y_train & y_test to np.array:
    y_train = y_train.replace({'Y':1, 'N':0}).as_matrix()
    y_test = y_test.replace({'Y':1, 'N':0}).as_matrix()
    

    We'll create a pipeline to make sure that all the preprocessing steps that we do are just a single scikit-learn estimator.

    pipe = make_pipeline(PreProcessing(),
                        RandomForestClassifier())
    
    pipe
    
    Pipeline(memory=None,
         steps=[('preprocessing', PreProcessing()), ('randomforestclassifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                max_depth=None, max_features='auto', max_leaf_nodes=None,
                min_impurity_decrease=0.0, min_impurity_split=None,
                min_samples_leaf=1, min_samples_split=2,
                min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
                oob_score=False, random_state=None, verbose=0,
                warm_start=False))])
    

    To search for the best hyper-parameters (degree for PolynomialFeatures & alpha for Ridge), we'll do a Grid Search:

    • Defining param_grid:
    param_grid = {"randomforestclassifier__n_estimators" : [10, 20, 30],
                 "randomforestclassifier__max_depth" : [None, 6, 8, 10],
                 "randomforestclassifier__max_leaf_nodes": [None, 5, 10, 20], 
                 "randomforestclassifier__min_impurity_split": [0.1, 0.2, 0.3]}
    
    • Running the Grid Search:
    grid = GridSearchCV(pipe, param_grid=param_grid, cv=3)
    
    • Fitting the training data on the pipeline estimator:
    grid.fit(X_train, y_train)
    
    GridSearchCV(cv=3, error_score='raise-deprecating',
           estimator=Pipeline(memory=None,
         steps=[('preprocessing', PreProcessing()), ('randomforestclassifier', RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                max_depth=None, max_features='auto', max_leaf_nodes=None,
                min_impurity_decrease=0.0, min_impu...bs=None,
                oob_score=False, random_state=None, verbose=0,
                warm_start=False))]),
           fit_params=None, iid='warn', n_jobs=None,
           param_grid={'randomforestclassifier__n_estimators': [10, 20, 30], 'randomforestclassifier__max_depth': [None, 6, 8, 10], 'randomforestclassifier__max_leaf_nodes': [None, 5, 10, 20], 'randomforestclassifier__min_impurity_split': [0.1, 0.2, 0.3]},
           pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
           scoring=None, verbose=0)
    
    • Let's see what parameter did the Grid Search select:
    print("Best parameters: {}".format(grid.best_params_))
    
    Best parameters: {'randomforestclassifier__max_depth': None, 'randomforestclassifier__max_leaf_nodes': None, 'randomforestclassifier__min_impurity_split': 0.3, 'randomforestclassifier__n_estimators': 30}
    
    • Let's score:
    print("Validation set score: {:.2f}".format(grid.score(X_test, y_test)))
    
    Validation set score: 0.79
    

    3. 保存机器学习模型:序列化和反序列化

    # 保存模型
    from sklearn.externals import joblib
    joblib.dump(grid, 'loan_model.pkl')
    
    ['loan_model.pkl']
    
    # 加载模型
    grid = joblib.load('loan_model.pkl')
    
    # 读取测试数据
    test_df = pd.read_csv('../data/test.csv', encoding="utf-8-sig")
    test_df = test_df.head()
    
    test_df
    
    Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area
    0 LP001015 Male Yes 0 Graduate No 5720 0 110.0 360.0 1.0 Urban
    1 LP001022 Male Yes 1 Graduate No 3076 1500 126.0 360.0 1.0 Urban
    2 LP001031 Male Yes 2 Graduate No 5000 1800 208.0 360.0 1.0 Urban
    3 LP001035 Male Yes 2 Graduate No 2340 2546 100.0 360.0 NaN Urban
    4 LP001051 Male No 0 Not Graduate No 3276 0 78.0 360.0 1.0 Urban
    # 使用模型进行预测
    grid.predict(test_df)
    
    array([1, 1, 1, 1, 1], dtype=int64)
    

    4. 使用Flask创建API

    我们将保持文件夹结构尽可能简单:

    Folder Struct

    构建包装函数有三个重要部分, apicall():

    • 获取请求数据

    • 加载模型

    • 预测并响应

    HTTP消息由头和正文组成。作为标准,发送的主体内容大部分是“json”格式。我们将发送(' POST url-endpoint/ ')传入的数据作为批处理,以获得预测。

    (NOTE: 您可以直接发送纯文本、XML、csv或图像,但为了格式的可互换性,建议使用“json”)

    import pandas as pd
    from sklearn.externals import joblib
    from flask import Flask, jsonify, request
    
    app = Flask(__name__)
    
    
    @app.route('/predict', methods=['POST'])
    def apicall():
        try:
            # 获取test数据,可通过json,也可通过其他方式
            test_json = request.get_json()
            test = pd.read_json(test_json, orient='records')
            test['Dependents'] = [str(x) for x in list(test['Dependents'])]
            loan_ids = test['Loan_ID']
    
            # 读取数据库形式
            # sql = "select * from data where unif_cust_id=" + unif_cust_id
            # conn = create_engine('mysql+mysqldb://test:test@localhost:3306/score_card?charset=utf8')
            # data = pd.read_sql(sql, conn)
    
        except Exception as e:
            raise e
    
        if test.empty:
            return bad_request()
        else:
            # 加载模型
            print("Loading the model...")
            loaded_model = joblib.load('loan_model.pkl')
    
            # 预测
            print("The model has been loaded...doing predictions now...")
            predictions = loaded_model.predict(test)
    
            # 将预测结果存入DataFrame中
            prediction_series = list(pd.Series(predictions))
            final_predictions = pd.DataFrame(list(zip(loan_ids, prediction_series)))
    
            # 返回接口响应
            responses = jsonify(predictions=final_predictions.to_json(orient="records"))
            responses.status_code = 200
    
            return responses
    
    
    @app.errorhandler(400)
    def bad_request(error=None):
        message = {
            'status': 400,
            'message': 'Bad Request: ' + request.url + '--> Please check your data payload...',
        }
        resp = jsonify(message)
        resp.status_code = 400
    
        return resp
    
    
    if __name__ == '__main__':
        app.run()
    
    
     * Serving Flask app "__main__" (lazy loading)
     * Environment: production
       WARNING: Do not use the development server in a production environment.
       Use a production WSGI server instead.
     * Debug mode: off
    
    
     * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
    
    
    Loading the model...
    The model has been loaded...doing predictions now...
    
    
    127.0.0.1 - - [11/Nov/2019 10:05:09] "POST /predict HTTP/1.1" 200 -
    

    请求API

    如果使用jupyter,请另启一个页面进行请求。

    import json
    import requests
    import pandas as pd
    
    """Setting the headers to send and accept json responses
    """
    header = {'Content-Type': 'application/json', 
                      'Accept': 'application/json'}
    
    """Reading test batch
    """
    df = pd.read_csv('../data/test.csv', encoding="utf-8-sig")
    df = df.head()
    
    """Converting Pandas Dataframe to json
    """
    data = df.to_json(orient='records')
    
    data
    
    '[{"Loan_ID":"LP001015","Gender":"Male","Married":"Yes","Dependents":"0","Education":"Graduate","Self_Employed":"No","ApplicantIncome":5720,"CoapplicantIncome":0,"LoanAmount":110.0,"Loan_Amount_Term":360.0,"Credit_History":1.0,"Property_Area":"Urban"},{"Loan_ID":"LP001022","Gender":"Male","Married":"Yes","Dependents":"1","Education":"Graduate","Self_Employed":"No","ApplicantIncome":3076,"CoapplicantIncome":1500,"LoanAmount":126.0,"Loan_Amount_Term":360.0,"Credit_History":1.0,"Property_Area":"Urban"},{"Loan_ID":"LP001031","Gender":"Male","Married":"Yes","Dependents":"2","Education":"Graduate","Self_Employed":"No","ApplicantIncome":5000,"CoapplicantIncome":1800,"LoanAmount":208.0,"Loan_Amount_Term":360.0,"Credit_History":1.0,"Property_Area":"Urban"},{"Loan_ID":"LP001035","Gender":"Male","Married":"Yes","Dependents":"2","Education":"Graduate","Self_Employed":"No","ApplicantIncome":2340,"CoapplicantIncome":2546,"LoanAmount":100.0,"Loan_Amount_Term":360.0,"Credit_History":null,"Property_Area":"Urban"},{"Loan_ID":"LP001051","Gender":"Male","Married":"No","Dependents":"0","Education":"Not Graduate","Self_Employed":"No","ApplicantIncome":3276,"CoapplicantIncome":0,"LoanAmount":78.0,"Loan_Amount_Term":360.0,"Credit_History":1.0,"Property_Area":"Urban"}]'
    
    """POST <url>/predict
    """
    resp = requests.post("http://127.0.0.1:5000/predict", 
                        data = json.dumps(data),
                        headers= header)
    
    resp.status_code
    
    200
    
    resp.json()
    
    {'predictions': '[{"0":"LP001015","1":1},{"0":"LP001022","1":1},{"0":"LP001031","1":1},{"0":"LP001035","1":1},{"0":"LP001051","1":1}]'}
  • 相关阅读:
    数组的简单操作
    关系型数据库的设计范式

    高斯分布
    一 .HTTP协议
    为什么OGNL表达式功能强大?
    官方文档 恢复备份指南三 Recovery Manager Architecture
    官方文档 恢复备份指南二 Getting Started with RMAN
    官方文档 恢复备份指南一 Introduction to Backup and Recovery
    Python中lambda使用简易教程
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/11833283.html
Copyright © 2020-2023  润新知