• PyTorch Tutorials 5 数据并行(选读)


    %matplotlib inline
    

    数据并行(选读)

    Authors: Sung Kim and Jenny Kang

    在这个教程里,我们将学习如何使用 DataParallel 来使用多GPU。

    PyTorch非常容易就可以使用多GPU,用如下方式把一个模型放到GPU上:

    
        device = torch.device("cuda:0")
        model.to(device)
    

    GPU:
    然后复制所有的张量到GPU上:

    
        mytensor = my_tensor.to(device)
    

    请注意,只调用my_tensor.to(device)并没有复制张量到GPU上,而是返回了一个copy。所以你需要把它赋值给一个新的张量并在GPU上使用这个张量。

    在多GPU上执行前向和反向传播是自然而然的事。
    但是PyTorch默认将只使用一个GPU。

    使用DataParallel可以轻易的让模型并行运行在多个GPU上。

    
        model = nn.DataParallel(model)
    

    这才是这篇教程的核心,接下来我们将更详细的介绍它。

    导入和参数

    导入PyTorch模块和定义参数。

    import torch
    import torch.nn as nn
    from torch.utils.data import Dataset, DataLoader
    
    # Parameters and DataLoaders
    input_size = 5
    output_size = 2
    
    batch_size = 30
    data_size = 100
    

    Device

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    

    虚拟数据集

    制作一个虚拟(随机)数据集,
    你只需实现 __getitem__

    class RandomDataset(Dataset):
    
        def __init__(self, size, length):
            self.len = length
            self.data = torch.randn(length, size)
    
        def __getitem__(self, index):
            return self.data[index]
    
        def __len__(self):
            return self.len
    
    rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size), batch_size=batch_size, shuffle=True)
    

    简单模型

    作为演示,我们的模型只接受一个输入,执行一个线性操作,然后得到结果。
    说明:DataParallel能在任何模型(CNN,RNN,Capsule Net等)上使用。

    我们在模型内部放置了一条打印语句来打印输入和输出向量的大小。

    请注意批次的秩为0时打印的内容。

    class Model(nn.Module):
        # Our model
    
        def __init__(self, input_size, output_size):
            super(Model, self).__init__()
            self.fc = nn.Linear(input_size, output_size)
    
        def forward(self, input):
            output = self.fc(input)
            print("	In Model: input size", input.size(),
                  "output size", output.size())
    
            return output
    

    创建一个模型和数据并行

    这是本教程的核心部分。

    首先,我们需要创建一个模型实例和检测我们是否有多个GPU。
    如果有多个GPU,使用nn.DataParallel来包装我们的模型。
    然后通过mmodel.to(device)把模型放到GPU上。

    model = Model(input_size, output_size)
    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
      model = nn.DataParallel(model)
    
    model.to(device)
    
    Model(
      (fc): Linear(in_features=5, out_features=2, bias=True)
    )
    

    运行模型

    现在可以看到输入和输出张量的大小。

    for data in rand_loader:
        input = data.to(device)
        output = model(input)
        print("Outside: input size", input.size(),
              "output_size", output.size())
    
    	In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    	In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    	In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    	In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
    

    结果

    当没有或者只有一个GPU时,对30个输入和输出进行批处理,得到了期望的一样得到30个输入和输出,但是如果你有多个GPU,你得到如下的结果。

    2 GPUs
    ~

    If you have 2, you will see:

    .. code:: bash

    # on 2 GPUs
    Let's use 2 GPUs!
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
    

    3 GPUs
    ~

    If you have 3 GPUs, you will see:

    .. code:: bash

    Let's use 3 GPUs!
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
    

    8 GPUs
    ~~

    If you have 8, you will see:

    .. code:: bash

    Let's use 8 GPUs!
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
    

    总结

    DataParallel会自动的划分数据,并将作业发送到多个GPU上的多个模型。
    并在每个模型完成作业后,收集合并结果并返回。

    更多信息请看这里:
    https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.

  • 相关阅读:
    【iOS开发-从网络上获取图片尺寸】
    【iOS开发之静态库、动态库】
    【iOS开发之OC和JS互调】
    【iOS之runtime、runloop】
    【iOS开发之C语言】sprintf,strncpy,strcmp三个函数的区别
    计算机中的存储单位
    linux命令行
    python的安装
    Java的跨平台特性
    方法的重写(override)两同两小一大原则:
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10963655.html
Copyright © 2020-2023  润新知