• Python实现机器学习算法:决策树算法


    '''
    数据集:Mnist
    训练集数量:60000
    测试集数量:10000
    ------------------------------
    运行结果:ID3(未剪枝)
        正确率:85.9%
        运行时长:356s
    '''
    
    import time
    import numpy as np
    
    
    def loadData(fileName):
        '''
        加载文件
        :param fileName:要加载的文件路径
        :return: 数据集和标签集
        '''
        # 存放数据及标记
        dataArr = [];
        labelArr = []
        # 读取文件
        fr = open(fileName)
        # 遍历文件中的每一行
        for line in fr.readlines():
            # 获取当前行,并按“,”切割成字段放入列表中
            # strip:去掉每行字符串首尾指定的字符(默认空格或换行符)
            # split:按照指定的字符将字符串切割成每个字段,返回列表形式
            curLine = line.strip().split(',')
            # 将每行中除标记外的数据放入数据集中(curLine[0]为标记信息)
            # 在放入的同时将原先字符串形式的数据转换为整型
            # 此外将数据进行了二值化处理,大于128的转换成1,小于的转换成0,方便后续计算
            dataArr.append([int(int(num) > 128) for num in curLine[1:]])
            # 将标记信息放入标记集中
            # 放入的同时将标记转换为整型
            labelArr.append(int(curLine[0]))
        # 返回数据集和标记
        return dataArr, labelArr
    
    
    def majorClass(labelArr):
        '''
        找到当前标签集中占数目最大的标签
        :param labelArr: 标签集
        :return: 最大的标签
        '''
        # 建立字典,用于不同类别的标签技术
        classDict = {}
        # 遍历所有标签
        for i in range(len(labelArr)):
            # 当第一次遇到A标签时,字典内还没有A标签,这时候直接幅值加1是错误的,
            # 所以需要判断字典中是否有该键,没有则创建,有就直接自增
            if labelArr[i] in classDict.keys():
                # 若在字典中存在该标签,则直接加1
                classDict[labelArr[i]] += 1
            else:
                # 若无该标签,设初值为1,表示出现了1次了
                classDict[labelArr[i]] = 1
        # 对字典依据值进行降序排序
        classSort = sorted(classDict.items(), key=lambda x: x[1], reverse=True)
        # 返回最大一项的标签,即占数目最多的标签
        return classSort[0][0]
    
    
    def calc_H_D(trainLabelArr):
        '''
        计算数据集D的经验熵,参考公式5.7 经验熵的计算
        :param trainLabelArr:当前数据集的标签集
        :return: 经验熵
        '''
        # 初始化为0
        H_D = 0
        # 将当前所有标签放入集合中,这样只要有的标签都会在集合中出现,且出现一次。
        # 遍历该集合就可以遍历所有出现过的标记并计算其Ck
        # 这么做有一个很重要的原因:首先假设一个背景,当前标签集中有一些标记已经没有了,比如说标签集中
        # 没有0(这是很正常的,说明当前分支不存在这个标签)。 式5.7中有一项Ck,那按照式中的针对不同标签k
        # 计算Cl和D并求和时,由于没有0,那么C0=0,此时C0/D0=0,log2(C0/D0) = log2(0),事实上0并不在log的
        # 定义区间内,出现了问题
        # 所以使用集合的方式先知道当前标签中都出现了那些标签,随后对每个标签进行计算,如果没出现的标签那一项就
        # 不在经验熵中出现(未参与,对经验熵无影响),保证log的计算能一直有定义
        trainLabelSet = set([label for label in trainLabelArr])
        # 遍历每一个出现过的标签
        for i in trainLabelSet:
            # 计算|Ck|/|D|
            # trainLabelArr == i:当前标签集中为该标签的的位置
            # 例如a = [1, 0, 0, 1], c = (a == 1): c == [True, false, false, True]
            # trainLabelArr[trainLabelArr == i]:获得为指定标签的样本
            # trainLabelArr[trainLabelArr == i].size:获得为指定标签的样本的大小,即标签为i的样本
            # 数量,就是|Ck|
            # trainLabelArr.size:整个标签集的数量(也就是样本集的数量),即|D|
            p = trainLabelArr[trainLabelArr == i].size / trainLabelArr.size
            # 对经验熵的每一项累加求和
            H_D += -1 * p * np.log2(p)
    
        # 返回经验熵
        return H_D
    
    
    def calcH_D_A(trainDataArr_DevFeature, trainLabelArr):
        '''
        计算经验条件熵
        :param trainDataArr_DevFeature:切割后只有feature那列数据的数组
        :param trainLabelArr: 标签集数组
        :return: 经验条件熵
        '''
        # 初始为0
        H_D_A = 0
        # 在featue那列放入集合中,是为了根据集合中的数目知道该feature目前可取值数目是多少
        trainDataSet = set([label for label in trainDataArr_DevFeature])
    
        # 对于每一个特征取值遍历计算条件经验熵的每一项
        for i in trainDataSet:
            # 计算H(D|A)
            # trainDataArr_DevFeature[trainDataArr_DevFeature == i].size / trainDataArr_DevFeature.size:|Di| / |D|
            # calc_H_D(trainLabelArr[trainDataArr_DevFeature == i]):H(Di)
            H_D_A += trainDataArr_DevFeature[trainDataArr_DevFeature == i].size / trainDataArr_DevFeature.size 
                     * calc_H_D(trainLabelArr[trainDataArr_DevFeature == i])
        # 返回得出的条件经验熵
        return H_D_A
    
    
    def calcBestFeature(trainDataList, trainLabelList):
        '''
        计算信息增益最大的特征
        :param trainDataList: 当前数据集
        :param trainLabelList: 当前标签集
        :return: 信息增益最大的特征及最大信息增益值
        '''
        # 将数据集和标签集转换为数组形式
        # trainLabelArr转换后需要转置,这样在取数时方便
        # 例如a = np.array([1, 2, 3]); b = np.array([1, 2, 3]).T
        # 若不转置,a[0] = [1, 2, 3],转置后b[0] = 1, b[1] = 2
        # 对于标签集来说,能够很方便地取到每一位是很重要的
        trainDataArr = np.array(trainDataList)
        trainLabelArr = np.array(trainLabelList).T
    
        # 获取当前特征数目,也就是数据集的横轴大小
        featureNum = trainDataArr.shape[1]
    
        # 初始化最大信息增益
        maxG_D_A = -1
        # 初始化最大信息增益的特征
        maxFeature = -1
        # 对每一个特征进行遍历计算
        for feature in range(featureNum):
            # “5.2.2 信息增益”中“算法5.1(信息增益的算法)”第一步:
            # 1.计算数据集D的经验熵H(D)
            H_D = calc_H_D(trainLabelArr)
            # 2.计算条件经验熵H(D|A)
            # 由于条件经验熵的计算过程中只涉及到标签以及当前特征,为了提高运算速度(全部样本
            # 做成的矩阵运算速度太慢,需要剔除不需要的部分),将数据集矩阵进行切割
            # 数据集在初始时刻是一个Arr = 60000*784的矩阵,针对当前要计算的feature,在训练集中切割下
            # Arr[:, feature]这么一条来,因为后续计算中数据集中只用到这个(没明白的跟着算一遍例5.2)
            # trainDataArr[:, feature]:在数据集中切割下这么一条
            # trainDataArr[:, feature].flat:将这么一条转换成竖着的列表
            # np.array(trainDataArr[:, feature].flat):再转换成一条竖着的矩阵,大小为60000*1(只是初始是
            # 这么大,运行过程中是依据当前数据集大小动态变的)
            trainDataArr_DevideByFeature = np.array(trainDataArr[:, feature].flat)
            # 3.计算信息增益G(D|A)    G(D|A) = H(D) - H(D | A)
            G_D_A = H_D - calcH_D_A(trainDataArr_DevideByFeature, trainLabelArr)
            # 不断更新最大的信息增益以及对应的feature
            if G_D_A > maxG_D_A:
                maxG_D_A = G_D_A
                maxFeature = feature
        return maxFeature, maxG_D_A
    
    
    def getSubDataArr(trainDataArr, trainLabelArr, A, a):
        '''
        更新数据集和标签集
        :param trainDataArr:要更新的数据集
        :param trainLabelArr: 要更新的标签集
        :param A: 要去除的特征索引
        :param a: 当data[A]== a时,说明该行样本时要保留的
        :return: 新的数据集和标签集
        '''
        # 返回的数据集
        retDataArr = []
        # 返回的标签集
        retLabelArr = []
        # 对当前数据的每一个样本进行遍历
        for i in range(len(trainDataArr)):
            # 如果当前样本的特征为指定特征值a
            if trainDataArr[i][A] == a:
                # 那么将该样本的第A个特征切割掉,放入返回的数据集中
                retDataArr.append(trainDataArr[i][0:A] + trainDataArr[i][A + 1:])
                # 将该样本的标签放入返回标签集中
                retLabelArr.append(trainLabelArr[i])
        # 返回新的数据集和标签集
        return retDataArr, retLabelArr
    
    
    def createTree(*dataSet):
        '''
        递归创建决策树
        :param dataSet:(trainDataList, trainLabelList) <<-- 元祖形式
        :return:新的子节点或该叶子节点的值
        '''
        # 设置Epsilon,“5.3.1 ID3算法”第4步提到需要将信息增益与阈值Epsilon比较,若小于则直接处理后返回T
        Epsilon = 0.1
        # 从参数中获取trainDataList和trainLabelList
        trainDataList = dataSet[0][0]
        trainLabelList = dataSet[0][1]
        # 打印信息:开始一个子节点创建,打印当前特征向量数目及当前剩余样本数目
        print('start a node', len(trainDataList[0]), len(trainLabelList))
    
        # 将标签放入一个字典中,当前样本有多少类,在字典中就会有多少项
        # 也相当于去重,多次出现的标签就留一次。举个例子,假如处理结束后字典的长度为1,那说明所有的样本
        # 都是同一个标签,那就可以直接返回该标签了,不需要再生成子节点了。
        classDict = {i for i in trainLabelList}
        # 如果D中所有实例属于同一类Ck,则置T为单节点数,并将Ck作为该节点的类,返回T
        # 即若所有样本的标签一致,也就不需要再分化,返回标记作为该节点的值,返回后这就是一个叶子节点
        if len(classDict) == 1:
            # 因为所有样本都是一致的,在标签集中随便拿一个标签返回都行,这里用的第0个(因为你并不知道
            # 当前标签集的长度是多少,但运行中所有标签只要有长度都会有第0位。
            return trainLabelList[0]
    
        # 如果A为空集,则置T为单节点数,并将D中实例数最大的类Ck作为该节点的类,返回T
        # 即如果已经没有特征可以用来再分化了,就返回占大多数的类别
        if len(trainDataList[0]) == 0:
            # 返回当前标签集中占数目最大的标签
            return majorClass(trainLabelList)
    
        # 否则,按式5.10计算A中个特征值的信息增益,选择信息增益最大的特征Ag
        Ag, EpsilonGet = calcBestFeature(trainDataList, trainLabelList)
    
        # 如果Ag的信息增益比小于阈值Epsilon,则置T为单节点树,并将D中实例数最大的类Ck
        # 作为该节点的类,返回T
        if EpsilonGet < Epsilon:
            return majorClass(trainLabelList)
    
        # 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的
        # 类作为标记,构建子节点,由节点及其子节点构成树T,返回T
        treeDict = {Ag: {}}
        # 特征值为0时,进入0分支
        # getSubDataArr(trainDataList, trainLabelList, Ag, 0):在当前数据集中切割当前feature,返回新的数据集和标签集
        treeDict[Ag][0] = createTree(getSubDataArr(trainDataList, trainLabelList, Ag, 0))
        treeDict[Ag][1] = createTree(getSubDataArr(trainDataList, trainLabelList, Ag, 1))
    
        return treeDict
    
    
    def predict(testDataList, tree):
        '''
        预测标签
        :param testDataList:样本
        :param tree: 决策树
        :return: 预测结果
        '''
        # treeDict = copy.deepcopy(tree)
    
        # 死循环,直到找到一个有效地分类
        while True:
            # 因为有时候当前字典只有一个节点
            # 例如{73: {0: {74:6}}}看起来节点很多,但是对于字典的最顶层来说,只有73一个key,其余都是value
            # 若还是采用for来读取的话不太合适,所以使用下行这种方式读取key和value
            (key, value), = tree.items()
            # 如果当前的value是字典,说明还需要遍历下去
            if type(tree[key]).__name__ == 'dict':
                # 获取目前所在节点的feature值,需要在样本中删除该feature
                # 因为在创建树的过程中,feature的索引值永远是对于当时剩余的feature来设置的
                # 所以需要不断地删除已经用掉的特征,保证索引相对位置的一致性
                dataVal = testDataList[key]
                del testDataList[key]
                # 将tree更新为其子节点的字典
                tree = value[dataVal]
                # 如果当前节点的子节点的值是int,就直接返回该int值
                # 例如{403: {0: 7, 1: {297:7}},dataVal=0
                # 此时上一行tree = value[dataVal],将tree定位到了7,而7不再是一个字典了,
                # 这里就可以直接返回7了,如果tree = value[1],那就是一个新的子节点,需要继续遍历下去
                if type(tree).__name__ == 'int':
                    # 返回该节点值,也就是分类值
                    return tree
            else:
                # 如果当前value不是字典,那就返回分类值
                return value
    
    
    def accuracy(testDataList, testLabelList, tree):
        '''
        测试准确率
        :param testDataList:待测试数据集
        :param testLabelList: 待测试标签集
        :param tree: 训练集生成的树
        :return: 准确率
        '''
        # 错误次数计数
        errorCnt = 0
        # 遍历测试集中每一个测试样本
        for i in range(len(testDataList)):
            # 判断预测与标签中结果是否一致
            if testLabelList[i] != predict(testDataList[i], tree):
                errorCnt += 1
        # 返回准确率
        return 1 - errorCnt / len(testDataList)
    
    
    if __name__ == '__main__':
        # 开始时间
        start = time.time()
    
        # 获取训练集
        trainDataList, trainLabelList = loadData('../Mnist/mnist_train.csv')
        # 获取测试集
        testDataList, testLabelList = loadData('../Mnist/mnist_test.csv')
    
        # 创建决策树
        print('start create tree')
        tree = createTree((trainDataList, trainLabelList))
        print('tree is:', tree)
    
        # 测试准确率
        print('start test')
        accur = accuracy(testDataList, testLabelList, tree)
        print('the accur is:', accur)
    
        # 结束时间
        end = time.time()
        print('time span:', end - start)
    
    
  • 相关阅读:
    Python学习笔记第二十三周(Flask架构)
    Python学习笔记第二十二周(前端知识点补充)
    Python学习笔记第二十一周
    Python学习笔记第二十周
    Python学习笔记第十九周
    Python学习笔记第十八周
    Python学习笔记第十七周
    Python学习笔记第十六周
    python完成九九乘法表
    python
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10521341.html
Copyright © 2020-2023  润新知