• 继承与派生


    一.继承介绍

    继承是一种创建新类的方式,在Python中,新建的类可以继承一个或多个父类,新建的类可称为子类或派生类,父类又可称为基类或超类

    class ParentClass1: #定义父类
        pass
    
    class ParentClass2: #定义父类
        pass
    
    class SubClass1(ParentClass1): #单继承
        pass
    
    class SubClass2(ParentClass1,ParentClass2): #多继承
        pass
    

    通过类的内置属性__bases__可以查看类继承的所有父类

    >>> SubClass2.__bases__
    (<class '__main__.ParentClass1'>, <class '__main__.ParentClass2'>)
    

    在Python2中有经典类与新式类之分,没有显式地继承object类的类,以及该类的子类,都是经典类,显式地继承object的类,以及该类的子类,都是新式类。而在Python3中,即使没有显式地继承object,也会默认继承该类,如下

    >>> ParentClass1.__bases__
    (<class ‘object'>,)
    >>> ParentClass2.__bases__
    (<class 'object'>,)
    

    因而在Python3中统一都是新式类

    二.继承与抽象

    要找出类与类之间的继承关系,需要先抽象,再继承。抽象即总结相似之处,总结对象之间的相似之处得到类,总结类与类之间的相似之处就可以得到父类

    class Student:
        school='清华大学'
    
        def __init__(self,name,sex,age):
            self.name=name
            self.sex=sex
            self.age=age
        def choose(self):
            print('%s is choosing a course' %self.name)
    
    
    class Teacher:
        school='清华大学'
    
        def __init__(self,name,sex,age):
            self.name=name
            self.sex=sex
            self.age=age
    
        def teach(self):
            print('%s is teaching' %self.name)
    

    类Teacher与Student之间存在重复的代码,老师与学生都是人类,所以我们可以得出如下继承关系,实现代码重用

    class People:
        school='清华大学'
    
        def __init__(self,name,sex,age):
            self.name=name
            self.sex=sex
            self.age=age
    
    class Student(People):
        def choose(self):
            print('%s is choosing a course' %self.name)
    
    class Teacher(People):
        def teach(self):
            print('%s is teaching' %self.name)
    

    Teacher类内并没有定义__init__方法,但是会从父类中找到__init__,因而仍然可以正常实例化,如下

    >>> teacher1=Teacher('lili','male',18)
    >>> teacher1.school,teacher1.name,teacher1.sex,teacher1.age
    ('清华大学', 'lili', 'male', 18)
    

    三.属性查找

    有了继承关系,对象在查找属性时,先从对象自己的__dict__中找,如果没有则去子类中找,然后再去父类中找

    >>> class Foo:
    ...     def f1(self):
    ...         print('Foo.f1')
    ...     def f2(self):
    ...         print('Foo.f2')
    ...         self.f1()
    ... 
    >>> class Bar(Foo):
    ...     def f1(self):
    ...         print('Foo.f1')
    ... 
    >>> b=Bar()
    >>> b.f2()
    Foo.f2
    Foo.f1
    

    b.f2()会在父类Foo中找到f2,先打印Foo.f2,然后执行到self.f1(),即b.f1(),仍会按照:对象本身->类Bar->父类Foo的顺序依次找下去,在类Bar中找到f1,因而打印结果为Foo.f1

    父类如果不想让子类覆盖自己的方法,可以采用双下划线开头的方式将方法设置为私有的

    >>> class Foo:
    ...     def __f1(self): # 变形为_Foo__fa
    ...         print('Foo.f1') 
    ...     def f2(self):
    ...         print('Foo.f2')
    ...         self.__f1() # 变形为self._Foo__fa,因而只会调用自己所在的类中的方法
    ... 
    >>> class Bar(Foo):
    ...     def __f1(self): # 变形为_Bar__f1
    ...         print('Foo.f1')
    ... 
    >>> 
    >>> b=Bar()
    >>> b.f2() #在父类中找到f2方法,进而调用b._Foo__f1()方法,同样是在父类中找到该方法
    Foo.f2
    Foo.f1
    

    四.继承的实现原理

    1.菱形问题

    大多数面向对象语言都不支持多继承,而在Python中,一个子类是可以同时继承多个父类的,这固然可以带来一个子类可以对多个不同父类加以重用的好处,但也有可能引发著名的 Diamond problem菱形问题(或称钻石问题,有时候也被称为“死亡钻石”),菱形其实就是对下面这种继承结构的形象比喻

    A类在顶部,B类和C类分别位于其下方,D类在底部将两者连接在一起形成菱形。
    这种继承结构下导致的问题称之为菱形问题:如果A中有一个方法,B和/或C都重写了该方法,而D没有重写它,那么D继承的是哪个版本的方法:B的还是C的?如下所示

    class A(object):
        def test(self):
            print('from A')
    
    
    class B(A):
        def test(self):
            print('from B')
    
    
    class C(A):
        def test(self):
            print('from C')
    
    
    class D(B,C):
        pass
    
    
    obj = D()
    obj.test() # 结果为:from B
    

    2.继承原理

    python到底是如何实现继承的呢? 对于你定义的每一个类,Python都会计算出一个方法解析顺序(MRO)列表,该MRO列表就是一个简单的所有基类的线性顺序列表,如下

    >>> D.mro() # 新式类内置了mro方法可以查看线性列表的内容,经典类没有该内置该方法
    [<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]
    

    python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。 而这个MRO列表的构造是通过一个C3线性化算法来实现的。

    1.子类会先于父类被检查
    2.多个父类会根据它们在列表中的顺序被检查
    3.如果对下一个类存在两个合法的选择,选择第一个父类
    

    所以obj.test()的查找顺序是,先从对象obj本身的属性里找方法test,没有找到,则参照属性查找的发起者(即obj)所处类D的MRO列表来依次检索,首先在类D中未找到,然后再B中找到方法test

    PS:
    1.由对象发起的属性查找,会从对象自身的属性里检索,没有则会按照对象的类.mro()规定的顺序依次找下去,
    2.由类发起的属性查找,会按照当前类.mro()规定的顺序依次找下去,

    3.深度优先和广度优先

    参照下述代码,多继承结构为非菱形结构,此时,会按照先找B这一条分支,然后再找C这一条分支,最后找D这一条分支的顺序直到找到我们想要的属性

    class E:
        def test(self):
            print('from E')
    
    
    class F:
        def test(self):
            print('from F')
    
    
    class B(E):
        def test(self):
            print('from B')
    
    
    class C(F):
        def test(self):
            print('from C')
    
    
    class D:
        def test(self):
            print('from D')
    
    
    class A(B, C, D):
        # def test(self):
        #     print('from A')
        pass
    
    
    print(A.mro())
    '''
    [<class '__main__.A'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.F'>, <class '__main__.D'>, <class 'object'>]
    '''
    
    obj = A()
    obj.test() # 结果为:from B
    # 可依次注释上述类中的方法test来进行验证
    

    如果继承关系为菱形结构,那么经典类与新式类会有不同MRO,分别对应属性的两种查找方式:深度优先和广度优先

    class G: # 在python2中,未继承object的类及其子类,都是经典类
        def test(self):
            print('from G')
    
    class E(G):
        def test(self):
            print('from E')
    
    class F(G):
        def test(self):
            print('from F')
    
    class B(E):
        def test(self):
            print('from B')
    
    class C(F):
        def test(self):
            print('from C')
    
    class D(G):
        def test(self):
            print('from D')
    
    class A(B,C,D):
        # def test(self):
        #     print('from A')
        pass
    
    obj = A()
    obj.test() # 如上图,查找顺序为:obj->A->B->E->G->C->F->D->object
    # 可依次注释上述类中的方法test来进行验证,注意请在python2.x中进行测试
    

    class G(object):
        def test(self):
            print('from G')
    
    class E(G):
        def test(self):
            print('from E')
    
    class F(G):
        def test(self):
            print('from F')
    
    class B(E):
        def test(self):
            print('from B')
    
    class C(F):
        def test(self):
            print('from C')
    
    class D(G):
        def test(self):
            print('from D')
    
    class A(B,C,D):
        # def test(self):
        #     print('from A')
        pass
    
    obj = A()
    obj.test() # 如上图,查找顺序为:obj->A->B->E->C->F->D->G->object
    # 可依次注释上述类中的方法test来进行验证
    

    4.Pyton Mixins机制

    一个子类可以同时继承多个父类,这样的设计常被人诟病,一来它有可能导致可恶的菱形问题,二来在人的世界观里继承应该是个”is-a”关系。 比如轿车类之所以可以继承交通工具类,是因为基于人的世界观,我们可以说:轿车是一个(“is-a”)交通工具,而在人的世界观里,一个物品不可能是多种不同的东西,因此多重继承在人的世界观里是说不通的,它仅仅只是代码层面的逻辑。不过有没有这种情况,一个类的确是需要继承多个类呢?答案是有,我们还是拿交通工具来举例子:
    ​ 民航飞机、直升飞机、轿车都是一个(is-a)交通工具,前两者都有一个功能是飞行fly,但是轿车没有,所以如下所示我们把飞行功能放到交通工具这个父类中是不合理的

    class Vehicle:  # 交通工具
        def fly(self):
            '''
            飞行功能相应的代码        
            '''
            print("I am flying")
    
    
    class CivilAircraft(Vehicle):  # 民航飞机
        pass
    
    
    class Helicopter(Vehicle):  # 直升飞机
        pass
    
    
    class Car(Vehicle):  # 汽车并不会飞,但按照上述继承关系,汽车也能飞了
        pass
    

    但是如果民航飞机和直升机都各自写自己的飞行fly方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会重复代码将会越来越多)。为了尽可能地重用代码,那就只好在定义出一个飞行器的类,然后让民航飞机和直升飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么解决?不同的语言给出了不同的方法,让我们先来了解Java的处理方法。Java提供了接口interface功能,来实现多重继承:

    // 抽象基类:交通工具类
    public abstract class Vehicle {
    }
    
    // 接口:飞行器
    public interface Flyable {
        public void fly();
    }
    
    // 类:实现了飞行器接口的类,在该类中实现具体的fly方法,这样下面民航飞机与直升飞机在实现fly时直接重用即可
    public class FlyableImpl implements Flyable {
        public void fly() {
            System.out.println("I am flying");
        }
    }
    
    
    
    // 民航飞机,继承自交通工具类,并实现了飞行器接口
    public class CivilAircraft extends Vehicle implements Flyable {
        private Flyable flyable;
    
        public CivilAircraft() {
            flyable = new FlyableImpl();
        }
    
        public void fly() {
            flyable.fly();
        }
    }
    
    // 直升飞机,继承自交通工具类,并实现了飞行器接口
    public class Helicopter extends Vehicle implements Flyable {
        private Flyable flyable;
    
        public Helicopter() {
            flyable = new FlyableImpl();
        }
    
        public void fly() {
            flyable.fly();
        }
    }
    
    // 汽车,继承自交通工具类,
    public class Car extends Vehicle {
    }
    

    现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是飞机的属性,通过继承接口来获取。

    在Python中没有接口功能,但Python提供了Mixins机制,简单来说Mixins机制指的是子类混合(mixin)不同类的功能,而这些类采用统一的命名规范(例如Mixin后缀),以此标识这些类只是用来混合功能的,并不是用来标识子类的从属"is-a"关系的,所以Mixins机制本质仍是多继承,但同样遵守”is-a”关系,如下

    class Vehicle:  # 交通工具
        pass
    
    
    class FlyableMixin:
        def fly(self):
            '''
            飞行功能相应的代码        
            '''
            print("I am flying")
    
    
    class CivilAircraft(FlyableMixin, Vehicle):  # 民航飞机
        pass
    
    
    class Helicopter(FlyableMixin, Vehicle):  # 直升飞机
        pass
    
    
    class Car(Vehicle):  # 汽车
        pass
    
    # ps: 采用某种规范(如命名规范)来解决具体的问题是python惯用的套路
    

    可以看到,上面的CivilAircraft、Helicopter类实现了多继承,不过它继承的第一个类我们起名为FlyableMixin,而不是Flyable,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类,表示混入(mix-in),这种命名方式就是用来明确地告诉别人(python语言惯用的手法),这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。所以从含义上理解,CivilAircraft、Helicopter类都只是一个Vehicle,而不是一个飞行器。
    使用Mixin类实现多重继承要非常小心:

    1.首先它必须表示某一种功能,而不是某个物品,python 对于mixin类的命名方式一般以 Mixin, able, ible 为后缀
    2.其次它必须责任单一。一个类可以继承多个Mixin,为了保证 遵循继承的“is-a”原则,只能继承一个标识其归属含义的父类
    3.然后,它不依赖于子类的实现
    4.最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了)

    ​ Mixins是从多个类中重用代码的好方法,但是需要付出相应的代价,我们定义的Minx类越多,子类的代码可读性就会越差,并且更恶心的是,在继承的层级变多时,代码阅读者在定位某一个方法到底在何处调用时会晕头转向,如下

    class Displayer:
        def display(self, message):
            print(message)
    
    
    class LoggerMixin:
        def log(self, message, filename='logfile.txt'):
            with open(filename, 'a') as fh:
                fh.write(message)
    
        def display(self, message):
            super().display(message) # super的用法请参考下一小节
            self.log(message)
    
    
    class MySubClass(LoggerMixin, Displayer):
        def log(self, message):
            super().log(message, filename='subclasslog.txt') 
    
    
    obj = MySubClass()
    obj.display("This string will be shown and logged in subclasslog.txt")
    
    
    # 属性查找的发起者是obj,所以会参照类MySubClass的MRO来检索属性
    #[<class '__main__.MySubClass'>, <class '__main__.LoggerMixin'>, <class '__main__.Displayer'>, <class 'object'>]
    
    # 1、首先会去对象obj的类MySubClass找方法display,没有则去类LoggerMixin中找,找到开始执行代码
    # 2、执行LoggerMixin的第一行代码:执行super().display(message),参照MySubClass.mro(),super会去下一个类即类Displayer中找,找到display,开始执行代码,打印消息"This string will be shown and logged in subclasslog.txt"
    # 3、执行LoggerMixin的第二行代码:self.log(message),self是对象obj,即obj.log(message),属性查找的发起者为obj,所以会按照其类MySubClass.mro(),即MySubClass->LoggerMixin->Displayer->object的顺序查找,在MySubClass中找到方法log,开始执行super().log(message, filename='subclasslog.txt'),super会按照MySubClass.mro()查找下一个类,在类LoggerMixin中找到log方法开始执行,最终将日志写入文件subclasslog.txt
    

    PS

    Java只允许接口的多重继承。接口本质上是抽象基类,具有所有抽象方法,没有数据成员。
    与java一样,python也有抽象类的概念但是同样需要借助模块实现,抽象类是一个特殊的类,它的特殊之处在于只能被继承,不能被实例化,继承的子类必须实现抽象基类规定的方法,这样便可保证始终只有一个特定方法或属性的实现,并且不会产生歧义,因而也可以起到避免菱形问题的作用
    
    java的interface:https://www.cnblogs.com/linhaifeng/articles/7340153.html#_label6
    

    五.派生与方法重用

    子类可以派生出自己新的属性,在进行属性查找时,子类中的属性名会优先于父类被查找,例如每个老师还有职称这一属性,我们就需要在Teacher类中定义该类自己的__init__覆盖父类的

    >>> class People:
    ...     school='清华大学'
    ...     
    ...     def __init__(self,name,sex,age):
    ...         self.name=name
    ...         self.sex=sex
    ...         self.age=age
    ... 
    >>> class Teacher(People):
    ...     def __init__(self,name,sex,age,title): # 派生
    ...         self.name=name
    ...         self.sex=sex
    ...         self.age=age
    ...         self.title=title
    ...     def teach(self):
    ...         print('%s is teaching' %self.name)
    ... 
    >>> obj=Teacher('lili','female',28,'高级讲师') #只会找自己类中的__init__,并不会自动调用父类的
    >>> obj.name,obj.sex,obj.age,obj.title
    ('lili', 'female', 28, '高级讲师')
    

    很明显子类Teacher中__init__内的前三行又是在写重复代码,若想在子类派生出的方法内重用父类的功能,有两种实现方式

    方法一:“指名道姓”地调用某一个类的函数

    >>> class Teacher(People):
    ...     def __init__(self,name,sex,age,title):
    ...         People.__init__(self,name,age,sex) #调用的是函数,因而需要传入self
    ...         self.title=title
    ...     def teach(self):
    ...         print('%s is teaching' %self.name)
    ...
    

    方法二:super()
    调用super()会得到一个特殊的对象,该对象专门用来引用父类的属性,且严格按照MRO规定的顺序向后查找

    >>> class Teacher(People):
    ...     def __init__(self,name,sex,age,title):
    ...         super().__init__(name,age,sex) #调用的是绑定方法,自动传入self
    ...         self.title=title
    ...     def teach(self):
    ...         print('%s is teaching' %self.name)
    ...
    

    PS:在Python2中super的使用需要完整地写成super(自己的类名,self) ,而在python3中可以简写为super()。

    这两种方式的区别是:方式一是跟继承没有关系的,而方式二的super()是依赖于继承的,并且即使没有直接继承关系,super()仍然会按照MRO继续往后查找

    >>> #A没有继承B
    ... class A:
    ...     def test(self):
    ...         super().test()
    ... 
    >>> class B:
    ...     def test(self):
    ...         print('from B')
    ... 
    >>> class C(A,B):
    ...     pass
    ... 
    >>> C.mro() # 在代码层面A并不是B的子类,但从MRO列表来看,属性查找时,就是按照顺序C->A->B->object,B就相当于A的“父类”
    [<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>,<class ‘object'>]
    >>> obj=C()
    >>> obj.test() # 属性查找的发起者是类C的对象obj,所以中途发生的属性查找都是参照C.mro()
    from B
    

    obj.test()首先找到A下的test方法,执行super().test()会基于MRO列表(以C.mro()为准)当前所处的位置继续往后查找(),然后在B中找到了test方法并执行。
    关于在子类中重用父类功能的这两种方式,使用任何一种都可以,但是在最新的代码中还是推荐使用super()

    六.组合

    在一个类中以另外一个类的对象作为数据属性,称为类的组合。组合与继承都是用来解决代码的重用性问题。不同的是:继承是一种“是”的关系,比如老师是人、学生是人,当类之间有很多相同的之处,应该使用继承;而组合则是一种“有”的关系,比如老师有生日,老师有多门课程,当类之间有显著不同,并且较小的类是较大的类所需要的组件时,应该使用组合,如下示例

    class Course:
        def __init__(self,name,period,price):
            self.name=name
            self.period=period
            self.price=price
        def tell_info(self):
            print('<%s %s %s>' %(self.name,self.period,self.price))
    
    class Date:
        def __init__(self,year,mon,day):
            self.year=year
            self.mon=mon
            self.day=day
        def tell_birth(self):
           print('<%s-%s-%s>' %(self.year,self.mon,self.day))
    
    class People:
        school='清华大学'
        def __init__(self,name,sex,age):
            self.name=name
            self.sex=sex
            self.age=age
    
    #Teacher类基于继承来重用People的代码,基于组合来重用Date类和Course类的代码
    class Teacher(People): #老师是人
        def __init__(self,name,sex,age,title,year,mon,day):
            super().__init__(name,age,sex)
            self.birth=Date(year,mon,day) #老师有生日
            self.courses=[] #老师有课程,可以在实例化后,往该列表中添加Course类的对象
        def teach(self):
            print('%s is teaching' %self.name)
    
    
    python=Course('python','3mons',3000.0)
    linux=Course('linux','5mons',5000.0)
    teacher1=Teacher('lili','female',28,'博士生导师',1990,3,23)
    
    # teacher1有两门课程
    teacher1.courses.append(python)
    teacher1.courses.append(linux)
    
    # 重用Date类的功能
    teacher1.birth.tell_birth()
    
    # 重用Course类的功能
    for obj in teacher1.courses: 
        obj.tell_info()
    

    此时对象teacher1集对象独有的属性、Teacher类中的内容、Course类中的内容于一身(都可以访问到),是一个高度整合的产物

  • 相关阅读:
    利用角色简化playbook
    lamp
    playbook部署lamp
    ansible-playbook配置不同系统yum源
    66. 加一
    628. 三个数的最大乘积
    977. 有序数组的平方
    383. 赎金信
    203. 移除链表元素
    83. 删除排序链表中的重复元素
  • 原文地址:https://www.cnblogs.com/chenwenyin/p/12666260.html
Copyright © 2020-2023  润新知