• poj 2553 The Bottom of a Graph


    Description

    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
    Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0
    

    Sample Output

    1 3
    2

    这个题把我弄晕了,不知道是每个强连通分量各自输出还是一起输出,还是只输出一个,可能是我英语不好,但是,我读的题目就是这样的,样例也不指明,WA的几次啊
    #include<map>
    #include<set>
    #include<stack>
    #include<queue>
    #include<cmath>
    #include<vector>
    #include<cstdio>
    #include<string>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #define  inf 0x0f0f0f0f
    using namespace std;
    
    int outdegree[10000+10];
    
    struct SCC
    {
        static const int maxn=10000+10;
        vector<int>group[maxn],scc[maxn];
        int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt,n,m;
        stack<int>S;
    
        void init()
        {
            for (int i=0;i<=n;i++) group[i].clear();
        }
    
        void addedge(int from,int to)
        {
            group[from].push_back(to);
        }
    
        void dfs(int u)
        {
            pre[u]=lowlink[u]=++dfs_clock;
            S.push(u);
            for (int i=0;i<group[u].size();i++)
            {
                int v=group[u][i];
                if (!pre[v])
                {
                    dfs(v);
                    lowlink[u]=min(lowlink[u],lowlink[v]);
                }
                else if (!sccno[v])
                {
                    lowlink[u]=min(lowlink[u],pre[v]);
                }
            }
            if (lowlink[u]==pre[u])
            {
                scc_cnt++;
                scc[scc_cnt].clear();
                while (1)
                {
                    int x=S.top();
                    S.pop();
                    scc[scc_cnt].push_back(x);
                    sccno[x]=scc_cnt;
                    if (x==u) break;
                }
            }
        }
    
        void find_scc()
        {
            dfs_clock=scc_cnt=0;
            memset(pre,0,sizeof(pre));
            memset(sccno,0,sizeof(sccno));
            for (int i=1;i<=n;i++)
            if (!pre[i]) dfs(i);
        }
    };
    
    SCC table;
    
    int main()
    {
        int a[10000+10],x,y;
        while (scanf("%d",&table.n)!=EOF && table.n)
        {
            scanf("%d",&table.m);
            table.init();
            for (int i=0;i<table.m;i++)
            {
                scanf("%d%d",&x,&y);
                table.addedge(x,y);
            }
            table.find_scc();
            for (int i=1;i<=table.scc_cnt;i++) outdegree[i]=0;
            for (int u=1;u<=table.n;u++)
            {
                for (int i=0;i<table.group[u].size();i++)
                {
                    int v=table.group[u][i];
                    if (table.sccno[u]!=table.sccno[v]) outdegree[table.sccno[u]]++;
                }
            }
            int k=0;
            for (int i=1;i<=table.scc_cnt;i++)
            {
                if (outdegree[i]==0)
                {
                    for (int j=0;j<table.scc[i].size();j++)
                    {
                        a[k++]=table.scc[i][j];
                    }
                    //break;
                }
            }
            sort(a,a+k);
            printf("%d",a[0]);
            for (int i=1;i<k;i++) printf(" %d",a[i]);
            printf("
    ");
    
        }
        return 0;
    }
    至少做到我努力了
  • 相关阅读:
    shell脚本中echo颜色设置
    整合Spring+Hibernate+Struts2的时候发现json数据一直无法传到页面,提示no-Session
    分页查询——Hibernate Criteria实现一次查询取得总记录数和分页后结果集
    JS,JQ 格式化小数位数
    简单地做一下“回到顶部”按钮,用jQuery实现其隐藏和显示
    二级联动,三级联动,初学者,纯javascript,不含jQuery
    Oracle数据库知识要点
    ParameterizedType理解笔记
    JDBC mysql 相关内容笔记
    在做关于NIO TCP编程小案例时遇到无法监听write的问题,没想到只是我的if语句的位置放错了位置,哎,看了半天没看出来
  • 原文地址:https://www.cnblogs.com/chensunrise/p/3741045.html
Copyright © 2020-2023  润新知