Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.
Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.
The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.
Print a single number — the maximum number of trees that you can cut down by the given rules.
5
1 2
2 1
5 10
10 9
19 1
3
5
1 2
2 1
5 10
10 9
20 1
4
In the first sample you can fell the trees like that:
- fell the 1-st tree to the left — now it occupies segment [ - 1;1]
- fell the 2-nd tree to the right — now it occupies segment [2;3]
- leave the 3-rd tree — it occupies point 5
- leave the 4-th tree — it occupies point 10
- fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19]
这道题目的意思为:输入树的总数n,然后分别输入树的位置position和树高height,树可以左倒或者右倒,但树顶不能到达旁边树的根部,计算可以砍倒的树的数目最大是多少。
1.用贪心的思想:
优先向左倒,向右倒的时候更新两棵树的距离。
#include<iostream> #define MAXN 100005 using namespace std; typedef long long ll; ll root[MAXN]; ll height[MAXN]; ll dist[MAXN]; int main() { int n; while (cin >> n) { int sum = 2; if (n == 1) { cout << '1' << endl; return 0; } for (int i = 0;i < n;i++) cin >> root[i] >> height[i]; for (int i = 1;i < n;i++) dist[i] = root[i] - root[i-1]; dist[0] = 0; for (int i = 1;i < n - 1;i++) { if (height[i] < dist[i]) sum++; else if (height[i] >= dist[i] && height[i] < dist[i + 1]) { sum++; dist[i + 1]-=height[i]; } } cout << sum << endl; } return 0; }
2:动态规划
dp[i][0]表示不砍倒,
dp[i][1]表示向左倒,
dp[i][2]表示向右倒,
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1], dp[i - 1][2])
左倒的时候分两种:前一棵树加现在这棵树的高度小于两棵树的距离和前一棵树加现在这棵树的高度大于两棵树的距离。
小于:dp[i][1] = max(dp[i - 1][0], dp[i - 1][1], dp[i - 1][2])+1
大于:dp[i][1] = max(dp[i - 1][0], dp[i - 1][1])+1
dp[i][2] = max(dp[i - 1][0], dp[i - 1][1], dp[i - 1][2]) + 1
#include<iostream> #include<algorithm> #define MAXN 100005 typedef long long ll; using namespace std; ll position[MAXN]; ll height[MAXN]; int dp[MAXN][3]; int main() { int n; while (cin >> n) { for (int i = 0;i < n;i++) cin >> position[i] >> height[i]; if (n == 1) { cout << '1' << endl; return 0; } dp[0][0] = 0; dp[0][1] = 1; if (position[1] - position[0] > height[0]) dp[0][2] = 1; else dp[0][2] = 0; for (int i = 1;i < n-1;i++) { dp[i][0] = max(max(dp[i - 1][0], dp[i - 1][1]), dp[i - 1][2]); if (height[i] < position[i] - position[i - 1]) dp[i][1] = max(dp[i - 1][0], dp[i - 1][1]) + 1; if (height[i] + height[i - 1] < position[i] - position[i - 1]) dp[i][1] = max(dp[i][1] - 1, dp[i - 1][2]) + 1; if (height[i] < position[i + 1] - position[i]) dp[i][2] = max(max(dp[i - 1][0], dp[i - 1][1]), dp[i - 1][2]) + 1; } cout << max(max(dp[n - 2][0], dp[n - 2][1]), dp[n - 2][2]) + 1 << endl; } return 0; }