• numpy库


    创建数组

    >>> np.ones([3,4])          # 值为浮点1的矩阵
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    >>> np.zeros([3,4])         # 值为浮点0的矩阵
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.]])
    >>> np.array([[1,2,3],[4,5,6]])    # 深拷贝
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> np.asarray([[1,2,3],[4,5,6]])  # 浅拷贝
    array([[1, 2, 3], 
           [4, 5, 6]])    

    数组属性

    >>> d=np.random.rand(2,3,4)   
    >>> d
    array([[[ 0.75432633,  0.57838693,  0.9298954 ,  0.01667251],
            [ 0.81329288,  0.18277114,  0.40584013,  0.30055277],
            [ 0.12805651,  0.38665696,  0.29655644,  0.61897223]],
    
           [[ 0.1072343 ,  0.34588952,  0.96080471,  0.56854714],
            [ 0.76898631,  0.4881976 ,  0.85973732,  0.1127037 ],
            [ 0.27826845,  0.81381869,  0.03623546,  0.11600406]]])
    >>> d.size   # 元素个数
    24
    >>> d.shape  # 数组形状
    (2, 3, 4)
    >>> d.dtype  # 元素类型
    dtype('float64')
    >>> d.ndim   # 数组维度
    3
    >>> d.itemsize # 元素字节长度
    8

    随机数(均匀分布)

    >>> np.random.uniform(0,100)  # 创建指定范围的随机浮点数
    79.95384787852716
    >>> np.random.randint(0,100)  # 创建指定范围的随机整数
    13
    >>> np.random.rand(3,3)       # 创建指定[0, 1]之间的浮点数矩阵
    array([[ 0.3672736 ,  0.64473369,  0.51615523],
           [ 0.12016337,  0.80318054,  0.02896355],
           [ 0.22252509,  0.41416445,  0.9141706 ]])

    正态分布

    np.random.normal(1, 0.5, (3,4))   # 指定均值、标准差、维度
    array([[ 0.86131114,  0.97396862,  1.41560527,  0.9125575 ],
           [ 0.50615441,  1.30600456,  0.28319673,  0.73952316],
           [ 1.683847  ,  1.88634808,  0.81664031,  1.04438156]])

    slice(切片)

     >>> a
    array([[ 0.91108116,  0.38937371,  0.44120738,  0.9711543 ,  0.50400801,
             0.8159346 ],
           [ 0.23592619,  0.9446476 ,  0.83056827,  0.80585383,  0.98337604,
             0.34744683]])
    >>> a[:,3:-1]
    array([[ 0.9711543 ,  0.50400801],
           [ 0.80585383,  0.98337604]])

    reshape (reshape前后元素个数要一致)

    >>> a=np.random.rand(2,6)
    >>> b=a.reshape(3,4)
    >>> a
    array([[ 0.91108116,  0.38937371,  0.44120738,  0.9711543 ,  0.50400801,
             0.8159346 ],
           [ 0.23592619,  0.9446476 ,  0.83056827,  0.80585383,  0.98337604,
             0.34744683]])
    >>> b
    array([[ 0.91108116,  0.38937371,  0.44120738,  0.9711543 ],
           [ 0.50400801,  0.8159346 ,  0.23592619,  0.9446476 ],
           [ 0.83056827,  0.80585383,  0.98337604,  0.34744683]])
    

    条件计算

    >>> a
    array([[80, 88],
           [82, 81],
           [84, 75],
           [86, 83],
           [75, 81]])
    >>> a>80
    array([[False,  True],
           [ True,  True],
           [ True, False],
           [ True,  True],
           [False,  True]], dtype=bool)
    >>> np.where(a<=80, 0, 1)  # <=80的元素替换为0,否则替换为1
    array([[0, 1],
           [1, 1],
           [1, 0],
           [1, 1],
           [0, 1]])

    最大(小)值

    >>> a
    array([[80, 88],
           [82, 81],
           [84, 75],
           [86, 83],
           [75, 81]])
    >>> np.amax(a, axis=0)   # 按列求最大值
    array([86, 88])
    >>> np.amax(a, axis=1)   # 按行求最大值
    array([88, 82, 84, 86, 81])
    >>> np.amin(a, axis=0)   # 按列求最小值
    array([75, 75])
    >>> np.amin(a, axis=1)   # 按行求最小值
    array([80, 81, 75, 83, 75])
    >>> np.mean(a, axis=1)   # 平均值
    array([ 84. ,  81.5,  79.5,  84.5,  78. ])
    >>> np.mean(a, axis=0)   
    array([ 81.4,  81.6])
    >>> np.std(a, axis=0)    # 标准差
    array([ 3.77359245,  4.1761226 ])  
    >>> np.std(a, axis=1)
    array([ 4. ,  0.5,  4.5,  1.5,  3. ])

    数组与数值的运算

    a
    array([[84, 92],
           [86, 85],
           [88, 79],
           [90, 87],
           [79, 85]])
    >>> a[:,0]+=4
    >>> a
    array([[88, 92],
           [90, 85],
           [92, 79],
           [94, 87],
           [83, 85]])
    >>> a[2:4,1] -= 10
    >>> a
    array([[88, 92],
           [90, 85],
           [92, 69],
           [94, 77],
           [83, 85]])

    数组拼接

    >>> v1
    [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]
    >>> v2
    [[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]
    >>> np.vstack((v1, v2))    # 垂直拼接
    array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20, 21, 22, 23]])
    >>> np.hstack((v1, v2))   # 水平拼接
    array([[ 0,  1,  2,  3,  4,  5, 12, 13, 14, 15, 16, 17],
           [ 6,  7,  8,  9, 10, 11, 18, 19, 20, 21, 22, 23]])
    >>> 

    矩阵乘法

    >>> a = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
    >>> b = np.array([[0.4], [0.6]])
    >>> np.dot(a, b)
    array([[ 84.8],
           [ 81.4],
           [ 78.6],
           [ 84.2],
           [ 78.6]])

    参考文档:

    https://www.jianshu.com/p/a260a8c43e44

    https://docs.scipy.org/doc/numpy/user/quickstart.html

  • 相关阅读:
    用R作Polar图等
    R语言绘制空间热力图
    Spark 基础及RDD基本操作
    Bars, rectangles with bases on x-axis
    spark dataframe操作集锦(提取前几行,合并,入库等)
    【R】用 ggplot2 绘制漂亮的分级统计地图
    Rattle:数据挖掘的界面化操作
    R语言进阶之4:数据整形(reshape)
    ggplot2——简介
    python复习冒泡排序
  • 原文地址:https://www.cnblogs.com/chenny7/p/9973609.html
Copyright © 2020-2023  润新知